If a tanker, or a whole 101-car line of tankers called a unit train, were traveling through a town, it makes sense that local authorities would want to know the very particular contents of those cars.
The railroad industry has made progress on this score in recent years. They designed an app called AskRail in collaboration with the International Association of Fire Chiefs to provide information to first responders in train accidents involving hazardous materials, according to a spokeswoman for the Association of American Railroads, an industry group.
But the app is only as good as the information that’s contained in it, which is provided by the shippers of the goods, which, in this case, would be the oil industry. They would probably use the codes developed by the Pipeline and Hazardous Materials Safety Administration, which provide several options for encoding what’s in a given tank car: “petroleum crude oil,” “petroleum distillates,” “petroleum products,” “oil, petroleum,” and “petroleum oil.”
All of these products call for the same safety protocol, which dictates isolating any “tank, rail car, or tank truck” that’s on fire for 800 meters (half a mile) in all directions with consideration of “initial evacuation for 800 meters (half a mile) in all directions.”
On the other hand, flammable gases, like butane, call for a different protocol, doubling the distance of isolation to 1,600 meters (a mile).
If a train full of condensate derailed, what would pop up on the app? Half a mile or a mile? What should pop up?
* * *
It’s possible that I’ve overstated the importance of the chemical composition of these crudes. A major National Academies of Sciences, Engineering, and Medicine report, which hit prepublication late last year, Safely Transporting Hazardous Liquids and Gases in a Changing U.S. Energy Landscape, recommended a variety of measures, and analyzing the oils themselves was not on the list. “The limited (less than a decade) experience with flammable-liquids unit trains suggests the high kinetic energy of the derailments has been a factor in the ignition of released product, more so than the specific volatility characteristics of the product being transported, such as its vapor pressure,” the report states. “However, there has been limited modeling of derailment kinetic energy that results in the conversion of thermal energy associated with multi-tank car derailments.”
In other words, if you have a train derailment of tank cars filled with flammable liquids and that stuff comes out, it’s gonna be bad, regardless of the specifics of the oil.
“There are issues with categorizing the crude oil, and there are definitely some differences between oils,” says Micah Himmel, a National Academies of Sciences, Engineering, and Medicine program officer who worked on the report. But when it comes to the safety of rail transport, the composition of the oil is not quite a red herring, he says, but it is a “pink herring.”