It is during these diversion periods, some of which can last from hours to days a few times each month, that the military essentially listens for the engine sounds and propeller whirs unique to navy ships. That’s the stuff they keep. Sometimes they push the button—there’s never advance warning—just because, so that you can never tell based on the pattern of diversions whether the military is or isn't performing exercises nearby. It was on a recent trip to Victoria, British Columbia that Ocean Networks Canada marine microbiologist Kim Juniper showed me a picture of the computer in the cage. It was hard not to laugh at the absurdity of it all.
"It's going to come to a point in the future where this is no longer going to be feasible for the navies to put resources into sorting all this data," he later says. The hydrophones alone generate 200 gigabytes of raw data each day, and there are other, similar networks of Internet-connected sensors that already exist, or are soon to come online. (Indeed, the navy is having similar discussions with the National Science Foundation regarding the Regional Scale Nodes.) But it's not NEPTUNE's scientists the military is necessarily worried about. Because the hydrophones are connected to the internet, and the raw data they collect is archived and made available for anyone to access in near-real time. It's how non-scientists might use the data that's of primary concern.
The navies are, essentially, worried about being surveilled by us—and, presumably, by the militaries of foreign states.
* * *
Though the art and science of submarine hunting is decades old, broadcasting this information on the Internet is new. It's Cold War concern with a cyber-era twist. Because, in the age of big data, little stays hidden. Not even the things beneath the surface of the sea.
In the later years of World War I, submarine surveillance was one of the main reasons hydrophones were used. Notes on Submarine Hunting Using Hydrophones, a 1918 book for British Naval officers, notes how hydrophones could be used to determine the speed of an engine and, in turn, an enemy submarine's position and distance. A book from 1920, Hush, or The Hydrophone Service, describes rather poetically how a submarine's electric motors might sound like, "the rotary motion of a spoon in a tea-cup," or "a rhythmical sawing of wood."
But in reality, any sound was of value or concern during the war, depending on which side of the hydrophone you were on. That's how sensitive hydrophones are. "Do not throw things about the deck or against the hull of the ship," the 1920 book warns submarine operators in hiding. "Do not break up coal or use a hammer: any noise is certain to give you away."
The U.S. Navy, too, began to install its own system of cabled hydrophones off the northwest pacific coast in 1951. The SOund SUrveillance System (SOSUS) was used, according to the Woods Hole Oceanographic Institution "for classified antisubmarine warfare and surveillance during the Cold War." Following its declassification after the Cold War's end, dual-use access was granted to the National Oceanic and Atmospheric Administration (NOAA) where it was repurposed to monitor undersea oceanic phenomena for scientific study, much as NEPTUNE is used today. But unlike NEPTUNE, “Access to SOSUS is restricted,” reads NOAA’s website, “both in the sense that the data are classified and can only be used in a secure facility.”