Researchers have found a way to predict a news story's popularity -- with an astounding 84 percent accuracy.
![[optional image description]](https://cdn.theatlantic.com/static/mt/assets/science/twit_halo.png)
Here, per one algorithm, could be the Platonic version of the news tweet:
Bits Blog: Apple Buddies Up With Cheaper Wireless Partners for iPhone nyti.ms/LcLviE
-- The New York Times (@nytimes) June 8, 2012
If that seems a little dull for Twitter Perfection ... well, that's the point. Steadiness -- compelling news expressed in straightforward, not hyperbolic, language -- is actually a component of maximally shareable content, the algorithm suggests. And this particular tweet is also sent from a credible source, The New York Times, which makes it extra-spreadable. It's about technology, the most popular, shareable category of news story. It's engaging without being insistent. And it stars a company -- Apple -- with high name recognition.
The algorithm comes courtesy of a fascinating paper [pdf] from UCLA and Hewlett-Packard's HP Labs. The researchers Roja Bandari, Sitram Asur, and Bernardo Huberman teamed up to try to predict the popularity -- which is to say, the spreadability -- of news articles in the social space. While previous work has relied on articles' early performance to predict their popularity over their remaining lifespan, Bandari et al focused on predicting their popularity even before they're formulated in the first place. The researchers have developed a tool that allows people -- and, in particular, news organizations -- to calibrate their content in advance of their posting and tweeting, creating stuff that's optimized for maximum attention and impact. That tool allows for the forecasting of an article's popularity with a remarkable 84 percent accuracy -- and it has implications not just for articles, but for tweets themselves.