In an edited excerpt from his new book, Too Big to Know, David Weinberger explains how the massive amounts of data necessary to deal with complex phenomena exceed any single brain's ability to grasp, yet networked science rolls on.
Thomas Jefferson and George Washington recorded daily weather observations, but they didn't record them hourly or by the minute. Not only did they have other things to do, such data didn't seem useful. Even after the invention of the telegraph enabled the centralization of weather data, the 150 volunteers who received weather instruments from the Smithsonian Institution in 1849 still reported only once a day. Now there is a literally immeasurable, continuous stream of climate data from satellites circling the earth, buoys bobbing in the ocean, and Wi-Fi-enabled sensors in the rain forest. We are measuring temperatures, rainfall, wind speeds, C02 levels, and pressure pulses of solar wind. All this data and much, much more became worth recording once we could record it, once we could process it with computers, and once we could connect the data streams and the data processors with a network.
How will we ever make sense of scientific topics that are too big to know? The short answer: by transforming what it means to know something scientifically.
This would not be the first time. For example, when Sir Francis Bacon said that knowledge of the world should be grounded in carefully verified facts about the world, he wasn't just giving us a new method to achieve old-fashioned knowledge. He was redefining knowledge as theories that are grounded in facts. The Age of the Net is bringing about a redefinition at the same scale. Scientific knowledge is taking on properties of its new medium, becoming like the network in which it lives.