Before the burn, teams will cut fire lines through some of the dense parts of the forest to keep the blaze from spreading beyond its planned perimeter, Chappell says. The Forest Service will also be counting on the weather to keep the fire in line. The agency is intentionally setting the burn toward the end of fire season, when the weather is cooler, both to keep it from growing so intense as to obliterate everything in its path—the goal is a fire that consumes about 60 percent of the trees and other kindling it encounters—and in the hopes that it’s followed by rain or snow.
“They’re hoping nature will put it out,” Ottmar says, although they’ll also have fire engines, pumps, and hoses on hand to stop any unruly flames, and the helicopters can be reequipped with buckets of water.
While the fire is burning, some 50 to 80 scientists will deploy an immense arsenal of instruments: a brand-new Doppler radar system capable of scanning the entire volume of the smoke plume in high-resolution; fire-hardened cameras and heat sensors; drones that measure smoke chemistry and film the burn from the air; weather balloons that profile conditions throughout the atmosphere. A fixed-wing aircraft will fly back and forth over the blaze while its onboard Fire Mapper-2 instrument measures heat output, data that’s crucial for “capturing the evolution of fire,” says Nancy French, a fire researcher at Michigan Technological University who’s heading up FASMEE’s fire-behavior and energy team. The Forest Service research meteorologist Brian Potter, meanwhile, is planning to deploy small sensors capable of detecting “infrasound,” sounds emitted below the range of human hearing by volcanoes, thunderstorms, and, perhaps, wildfires. To date, Potter says, researchers have looked at a number of smaller prescribed fires and heard nothing, but there’s always the chance they’ll pick up some murmurs on this burn.
All this technology is intended to cover four main study areas: fuels and consumption, fire behavior and energy, plume dynamics and meteorology, and smoke and emissions. After the burn, some follow-up studies will look at soil heating and aspen regeneration, Ottmar says. The troves of data being collected will be studied for months if not years, helping scientists paint a detailed picture of the inferno as it leaped across the landscape, scouring treetops and demolishing soil. Long after the last embers have cooled and suckers are sprouting anew from the wreckage, humans will be tracing the fate of tiny bits of bygone soot kicked aloft during the blaze, and using their findings to prepare for a fiery future.
Read: The simple reason that humans can’t control wildfires
The scientists are lucky to be doing this experiment at all. The original FASMEE plan called for $8 million to fund three campaigns. Most of the funds were to be provided through the Joint Fire Science Program (JFSP), a collaboration between the Forest Service and the Interior Department. But in 2018, for reasons that aren’t entirely clear, the JFSP’s budget was slashed from $9 million to $3 million, restricting the program’s ability to contribute to FASMEE. The Forest Service had already completed its study plan, though, and the scientists wanted to see the project through. So the JFSP, along with the Forest Service itself, scraped together enough money to save at least two of FASMEE’s planned campaigns: an effort to characterize the impacts of wildfires that burned out West this summer, and the experimental burns in Utah. But they did so at a cost. All told, FASMEE has received only $2 million to date. And the cuts have limited the scientists’ ability to collect certain types of data and begin data analysis, Ottmar says.