Collecting good data is also expensive, particularly if the country in question lacks financial and institutional resources, Jina added.
In some cases, the historical gaps in climate data and the infrastructure to collect it can be made up for by technological advances and international scientific projects. Satellites, for instance, can produce high-resolution images and temperature and precipitation records for most places on Earth.
But just because this data exists, climate scientists don’t automatically have access to it. Take the situation in the world-famous, ecologically diverse, and climatically vital Himalayas.
In 2012, Kamal Bawa, a conservation biologist at the University of Massachusetts at Boston, used satellite imagery to track changes in temperature, rainfall, and vegetation patterns in the Himalayas. The study was one of the first large-scale climatic analyses for the region, and it states that the Himalayas have already experienced at least 1.5 degrees Celsius of warming on average over the past 25 years.
Bawa told me that it can be difficult for researchers to navigate the politics of the mountains, which straddle Pakistan, India, Nepal, and China. There’s also a lack of funding, institutional resources, and international attention to a region that is particularly vulnerable to climate change both ecologically and socially.
In some cases, the best data just come from asking around. In a 2011 study, Bawa and his colleagues assessed how local villagers understood the changes in the landscape’s weather patterns and vegetation.
“When you go to the villages, people are talking about weather all the time,” he said. “Their daily activity is defined by what’s going to happen in the next two hours. ‘When is the rain going to end so we can do our chores?’ That’s a constant discussion.”
In other cases, they’ve just had to estimate. Jina and a team of researchers at the University of Chicago recently released a paper that models heat-related deaths in future climate scenarios. First, the team compiled one of the most comprehensive data sets to date on mortality: It covers 56 percent of the global population.
But this still left the other 44 percent to be filled in with a supercomputer model. “If we had data on 1 percent of the world, we could extrapolate out and say we had information on 100 percent of the world,” Jina said. “But the accuracy of that is open to question.”
“There’s this quote that I really love from Galileo that really describes science in a nutshell: ‘Measure what you can measure and make measurable what you can’t,’” he told me. “There are things which are very easy to measure for social and historical and other reasons, but as researchers, we’re not doing as well at measuring new things and new places. That’s an embedded problem in science and history—but usually it’s the most vulnerable people being written out of all the knowledge we’re generating. And I think that’s an enormous problem.”