On June 25, Timm Wrase awoke in Vienna and groggily scrolled through an online repository of newly posted physics papers. One title startled him into full consciousness.
The paper, by the prominent string theorist Cumrun Vafa of Harvard and his collaborators, conjectured a simple formula dictating which kinds of universes are allowed to exist and which are forbidden, according to string theory. The leading candidate for a “theory of everything” weaving the force of gravity together with quantum physics, string theory defines all matter and forces as vibrations of tiny strands of energy. The theory permits some 10500 different solutions: a vast, varied “landscape” of possible universes.* String theorists like Wrase and Vafa have strived for years to place our particular universe somewhere in this landscape of possibilities.
But now, Vafa and his colleagues were conjecturing that in the string landscape, universes like ours—or what ours is thought to be like—don’t exist. If the conjecture is correct, Wrase and other string theorists immediately realized, the cosmos must either be profoundly different than previously supposed or string theory must be wrong.
After dropping his kindergartner off that morning, Wrase went to work at the Vienna University of Technology, where his colleagues were also buzzing about the paper. That same day, in Okinawa, Japan, Vafa presented the conjecture at the Strings 2018 conference, which was streamed by physicists worldwide. Debate broke out on- and off-site. “There were people who immediately said, ‘This has to be wrong,’ other people who said, ‘Oh, I’ve been saying this for years,’ and everything in the middle,” Wrase says. There was confusion, he adds, but “also, of course, huge excitement. Because if this conjecture was right, then it has a lot of tremendous implications for cosmology.”