“It’s actually quite reassuring in showing that you could not accurately predict educational outcome from DNA,” says Dorothy Bishop, a neuroscientist and geneticist at the University of Oxford. “The disturbing scenario of people screening babies in the hope of selecting the brightest does not seem supported by this study.”
Indeed, Benjamin suspects that there’s a ceiling of accuracy that his team has almost hit. Even if they study millions more people, he believes they won’t be able to predict the educational fate of a single person with much more reliability than they can now. For that reason, the team have this to say in their FAQ:
What policy lessons or practical advice do you draw from this study?
None whatsoever. Any practical response—individual or policy-level—to this or similar research would be extremely premature and unsupported by the science.
So why bother doing the study at all?
One reason is to look at how genes and environments interact.“If you did a study like ours 100 years ago, the strongest genetic predictor of education would be how many X chromosomes you had, because society was set up in a way that it was much harder for women to get educated than men,” says Benjamin. Likewise, many of the genes that are associated with education today are likely important “because of how today’s educational system is set up. It requires people to sit at desks for hours, and listen to instructions from a teacher. People who get restless, or are less obedient to authority, will fare less well in that environment.”
Perhaps counterintuitively, Benjamin thinks that his team’s research “is really important for research on improving educational systems.” To understand how, forget genes for a moment, and think about wealth.
It’s uncontroversial to say that people who are born into rich families are more likely to fare better in school than those from poorer backgrounds. Of course, poor kids can still soar in school, and rich ones can flunk out, but few would deny that money is a powerful influence on people’s futures. Now, consider that household income explains just 7 percent of the variation in educational attainment, which is less than what genes can now account for. “Most social scientists wouldn’t do a study without accounting for socioeconomic status, even if that’s not what they’re interested in,” says Harden. The same ought to be true of our genes.
Imagine that authorities are planning to provide free preschool to kids from disadvantaged backgrounds. To see if such a policy actually helps children stay in school for longer, scientists would randomly assign the free classes to some kids but not others. Then, they would look at how the two groups fared. In doing so, they’d always try to account for factors like wealth that might also vary between the two groups. Similarly, “you can now wash away the genetic effects so you don’t have to worry about them,” says Benjamin. And in doing so, researchers could more precisely work out whether a policy change has any benefits—and they could do it through smaller, cheaper studies.
This, he argues, is the most powerful reason to study the genetics of education or cognitive ability—and ironically, it has very little to do with genes. Instead, it’s a way of making social science more powerful.
The team is essentially studying genes so they can more thoroughly ignore them.