Some scientists bristle at the tautology of “anthropic reasoning” and dislike the multiverse for being untestable. Even those open to the multiverse idea would love to have alternative solutions to the cosmological constant problem to explore. But so far it has proved nearly impossible to solve without a multiverse. “The problem of dark energy [is] so thorny, so difficult, that people have not got one or two solutions,” says Raman Sundrum, a theoretical physicist at the University of Maryland.

To understand why, consider what the vacuum energy actually is. Albert Einstein’s general theory of relativity says that matter and energy tell space-time how to curve, and space-time curvature tells matter and energy how to move. An automatic feature of the equations is that space-time can possess its own energy—the constant amount that remains when nothing else is there, which Einstein dubbed the cosmological constant. For decades, cosmologists assumed its value was exactly zero, given the universe’s reasonably steady rate of expansion, and they wondered why. But then, in 1998, astronomers discovered that the expansion of the cosmos is in fact gradually accelerating, implying the presence of a repulsive energy permeating space. Dubbed dark energy by the astronomers, it’s almost certainly equivalent to Einstein’s cosmological constant. Its presence causes the cosmos to expand ever more quickly, since, as it expands, new space forms, and the total amount of repulsive energy in the cosmos increases.

However, the inferred density of this vacuum energy contradicts what quantum-field theory, the language of particle physics, has to say about empty space. A quantum field is empty when there are no particle excitations rippling through it. But because of the uncertainty principle in quantum physics, the state of a quantum field is never certain, so its energy can never be exactly zero. Think of a quantum field as consisting of little springs at each point in space. The springs are always wiggling, because they’re only ever within some uncertain range of their most relaxed length. They’re always a bit too compressed or stretched, and therefore always in motion, possessing energy. This is called the zero-point energy of the field. Force fields have positive zero-point energies while matter fields have negative ones, and these energies add to and subtract from the total energy of the vacuum.

The total vacuum energy should roughly equal the largest of these contributing factors. (Say you receive a gift of $10,000; even after spending $100, or finding $3 in the couch, you’ll still have about $10,000.) Yet the observed rate of cosmic expansion indicates that its value is between 60 and 120 orders of magnitude smaller than some of the zero-point energy contributions to it, as if all the different positive and negative terms have somehow canceled out. Coming up with a physical mechanism for this equalization is extremely difficult for two main reasons.