With a single initial ingredient (the “inflaton field”), inflationary models reproduce many broad-brush features of the cosmos today. But as an origin story, inflation is lacking; it raises questions about what preceded it and where that initial, inflaton-laden speck came from. Undeterred, many theorists think the inflaton field must fit naturally into a more complete, though still unknown, theory of time’s origin.
But in the past few years, a growing number of cosmologists have cautiously revisited the alternative. They say the Big Bang might instead have been a Big Bounce. Some cosmologists favor a picture in which the universe expands and contracts cyclically like a lung, bouncing each time it shrinks to a certain size, while others propose that the cosmos only bounced once—that it had been contracting, before the bounce, since the infinite past, and that it will expand forever after. In either model, time continues into the past and future without end.
With modern science, there’s hope of settling this ancient debate. In the years ahead, telescopes could find definitive evidence for cosmic inflation. During the primordial growth spurt—if it happened—quantum ripples in the fabric of space-time would have become stretched and later imprinted as subtle swirls in the polarization of ancient light called the cosmic microwave background. Current and future telescope experiments are hunting for these swirls. If they aren’t seen in the next couple of decades, this won’t entirely disprove inflation (the telltale swirls could simply be too faint to make out), but it will strengthen the case for bounce cosmology, which doesn’t predict the swirl pattern.
Already, several groups are making progress at once. Most significantly, in the last year, physicists have come up with two new ways that bounces could conceivably occur. One of the models, described in a paper that will appear in the Journal of Cosmology and Astroparticle Physics, comes from Anna Ijjas of Columbia University, extending earlier work with her former adviser, the Princeton University professor and high-profile bounce cosmologist Paul Steinhardt. More surprisingly, the other new bounce solution, accepted for publication in Physical Review D, was proposed by Peter Graham, David Kaplan, and Surjeet Rajendran, a well-known trio of collaborators who mainly focus on particle-physics questions and have no previous connection to the bounce-cosmology community. It’s a noteworthy development in a field that’s highly polarized on the bang-vs.-bounce question.
The question gained renewed significance in 2001, when Steinhardt and three other cosmologists argued that a period of slow contraction in the history of the universe could explain its exceptional smoothness and flatness, as witnessed today, even after a bounce—with no need for a period of inflation.