The Planck team started from the faint drizzle of ancient light called the cosmic microwave background (CMB), which reveals the universe as it looked at a critical moment 380,000 years after the Big Bang. The CMB snapshot depicts a simple, nearly smooth, plasma-filled young universe. Pressure waves of all different wavelengths rippled through the plasma, squeezing and stretching it and creating subtle density variations on different length scales.
At the moment recorded in the CMB, pressure waves with particular wavelengths would have undergone just the right fraction of an undulation since the Big Bang to all reach zero amplitude, momentarily disappearing and creating smooth plasma densities at their associated length scale. Meanwhile, pressure waves with other wavelengths undulated just the right amount to exactly peak in amplitude at the critical moment, stretching and squeezing the plasma to the full extent possible and creating maximum density variations at their associated scales.
These peaks and troughs in density variations at different scales, which can be picked up by telescopes like Planck and plotted as the “CMB power spectrum,” encode virtually everything about the young universe. The Hubble constant, in particular, can be reconstructed by measuring the distances between the peaks. “It’s a geometric effect,” explained Leo Stein, a theoretical physicist at the California Institute of Technology: The more the universe has expanded, the more the light from the CMB has curved through expanding space-time, and the closer together the peaks ought to appear to us.
Other properties of nature also affect how the peaks end up looking, such as the behavior of the invisible “dark energy” that infuses the fabric of the cosmos. The Planck scientists therefore had to make assumptions about all the other cosmological parameters in order to arrive at their estimate of 67 for the Hubble constant.
The similarity of the two Hubble measurements “is amazing” considering the vastly different approaches used to determine them, said Wendy Freedman, an astrophysicist at the University of Chicago and a pioneer of the cosmic-distance ladder approach. And yet their margins of error don’t overlap. “The universe looks like it’s expanding about 8 percent faster than you would have expected based on how it looked in its youth and how we expect it to evolve,” Adam Riess of Johns Hopkins University, who led the SH0ES team, told Scientific American last year. “We have to take this pretty darn seriously.”
The 67-versus-73 discrepancy could come down to an unknown error on one side or both. Or it might be real and significant—an indication that the Planck team’s extrapolation from the early universe to the present is missing a cosmic ingredient, one that changed the course of history and led to a faster expansion rate than otherwise expected. If a hypothesized fourth type of neutrino populated the infant universe, for instance, this would have increased the radiation pressure and affected the CMB peak widths. Or dark energy, whose repulsive pressure accelerates the universe’s expansion, might be getting denser over time.