They’re pushing for an international project called Genome Project-write—GP-write—that aims to reduce the costs of building large genomes by 1,000 times within 10 years. “It’s an aggressive goal, but based on what we saw with the HGP—the reading project, if you will—we think we can do this,” said Jef Boeke from New York University School of Medicine. And just as the HGP helped to drive down the cost of DNA-sequencing, the GP-write team hopes that the demand created by their initiative will push down the cost of DNA-writing tech. “I want to see a time in the not-too-distant future when, in elementary schools, it’ll be routine to think: I want to do some DNA synthesis as a project,” said Pamela Silver from Harvard Medical School.
But GP-Write is still more of an idea than an actual thing. The group hopes to raise $100 million, but in the year since the project was first proposed, little of that sum has materialized. That cast a strange air upon the first day of the New York meeting, as if speakers were pitching ideas to a collaboration that has yet to successfully pitch itself.
Better news arrived on Wednesday, when the team announced that Boeke and Harris Wang from Columbia University have secured $500,000 for a GP-write pilot project, from the Defense Advanced Research Projects Agency (DARPA). They’ll use that money to engineer human cells into self-sufficient nutrient factories. Early on in our evolution, animals lost the ability to manufacture certain vitamins and amino acids, forcing us to get these essential nutrients from our diet. But plants, fungi, and bacteria can still produce these nutrients, and by exploiting their genes, we could restore that lost manufacturing ability to our own cells. That would make it much easier and cheaper to grow such cells in laboratory cultures.
DARPA’s involvement inevitably invites visions of self-sustaining soldiers who don’t need to eat, but the GP-Write team has explicitly said that they’re not trying to make synthetic people. They’re only ever planning to create synthetic cells, or blobs of tissue (organoids) made from those cells—not eggs or embryos.
For example, another possible pilot project involves creating lineages of “ultrasafe” human cells. Such cells could have their cancer genes deactivated so they could be more safely injected during stem cell treatments. They could be tweaked to avoid triggering an immune reaction, and so be used to grow organs for transplants. They could be made resistant to viruses, so that biotechnology companies could use them to pump out medicines and vaccines without fear of costly contamination. (In 2008, Genzyme lost millions of dollars after a virus hit its cell lines and forced it to close a manufacturing plant for months.)
Scientists can already do some of that with gene-editing techniques like CRISPR, which allow them to make precise changes to an organism’s DNA. But powerful though CRISPR is, it has limits. And as Nili Ostrov from Harvard University reminded me, editing requires synthesis—to use CRISPR, you need to make genetic material to guide editing enzymes to the right spot. And if you want to make a lot of edits, it might be more efficient to just build everything from scratch.