And so none of these new technologies, despite their individual strengths, solves the problem of counting fish. “I wish there was one giant hammer we could take to the problem and solve it that way,” said Singh. “Unfortunately, that doesn’t work.” But, providing NOAA can afford to add drones, sonar, and AUVs to its existing fish-counting toolkit, these technologies have the potential to improve data quality for hard-to-count species, as well as provide additional, valuable information about fish behavior and habitat.
* * *
According to Andrew Rosenberg, director of the Center for Science and Democracy at the Union of Concerned Scientists, “Fisheries management is a science-informed political process.” In other words, funding challenges and improvements in data collection aside, decisions about how many fish can be caught is never based purely on how many fish scientists think there are.
Rosenberg spent years as the northeast regional administrator for NOAA’s Fisheries division, moderating shouting matches between fishermen, politicians, and scientists. Although fisheries management council members have all pledged to protect the nation’s fishery resources, rather than simply represent their own interests, in reality, their perspectives are inherently biased. Inaccurate data is only part of a much larger problem of balancing the needs of all of these communities, whose time frames and incentives are rarely aligned.
Given all of the political obstacles, it’s hard not to wonder whether it’s even worth fighting for better fish counts. Some scientists argue that extra precision is unnecessary when the trends are so clear. “I didn’t need to know whether it was 20 or 22 percent of the biomass that we should be removing each year,” argued Rosenberg. “We were removing 60 percent, so all I needed to know was that it had to be a lot less.” Debating the accuracy of stock assessments is, to his mind, a dangerous distraction, “an endless argument about how many fish there are in the sea until all doubt is removed—and so are all of the fish.”
There is no doubt that many, if not most, commercial fish stocks are at historic lows, and that human pressure is to blame. Indeed, comparing estimates of 19th century cod abundance to today’s impoverished population makes the battles over minor recoveries or quota reductions over the past few decades seem almost ridiculous. According to Poul Holm, a professor of environmental history at Trinity College Dublin, based on analyses of 200 years’ worth of catch data, it’s clear that, over the past two centuries, “we have basically eradicated nine-tenths of the biomass of the large fish and marine mammals.”
Meanwhile, climate change is disrupting ocean conditions so fast that even the most responsibly crafted management plan based on the best possible data would struggle to keep up. Andy Pershing, chief scientific officer at the Gulf of Maine Research Institute, has seen this play out with cod in the Gulf of Maine, whose waters are some of the fastest warming in the world. With that environmental change has come shifts in species’ range, predator-prey relationships, and fish behavior, none of which are accounted for in the fishery managers’ statistical models. Pershing says that over the past decade, failure to factor in variations related to climate change has led scientists to think there should be more fish than there actually were in New England waters, meaning that managers set quotas based on inaccurate numbers. The result? “You end up creating this really frustrating situation where fishermen are doing their job, they’re staying within the limits”—but, despite their sacrifices, the cod population continues to decline.