Reporter's Notebook

Using Game Theory to Break the Climate Gridlock
Show Description +

Vann Newkirk, readers, and experts tackle how to analyze climate policy and climate change using game theory. Email Vann to join the discussion.

Show 1 Newer Notes

Game Theory and Climate Change: Defining the Problem

Stephane Mahe / Reuters

Welcome back, gamers! A week ago, I wrote a Note here with the goal of crowdsourcing reader and expert knowledge in order to come up with a game-theory-based understanding of climate policy that could be used to find some insights about how states and countries might implement different policies. So far, I’ve received dozens of emails and tweets from students, economists, game theorists, climate change scientists, and some field-leading experts with some great questions, ideas, and resources. I’m currently sifting through them all and working to gain a better idea of what questions might be answered and how.

I thought it might be a good time to whittle down just what we’re trying to do here based on feedback. First, just what actors and climate policies are we examining? Originally, I had the idea to just think about a kitchen sink of international actors or states. Obviously, that’s not a very good setup for any kind of modeling, so I’ve been thinking about three separate problems. The first is taking a look at West Virginia and Kentucky, two neighboring states that are among the worst in per capita greenhouse emissions. What might a regional emissions-cap agreement look like for them? What are the costs of mitigation for each state? What are the risks involved? Using simple models, what could payoffs could we predict from their decisions?

The second problem I’m considering is perhaps the classic climate-change “game” between the United States and China. Given that these countries make up 44 percent of all greenhouse gas emissions, this game provides a decent enough understanding of global climate policy and the inputs and considerations required. Here, let’s just consider a very loose hypothetical: cutting total combined emissions from fossil fuels in both countries by half over the next ten years. Would each country be responsible for only its current share, or would the United States pick up some of China’s slack? How much would the reduction cost? How could we estimate the climate gains and externalities of these decisions? What unique benefits and drawbacks might climate change mitigation have for each country? Given all these variables, we should be able to roughly model basic climate decisions between the two.

Ric Francis / AP

Let the game begin! I was very excited by my colleague Andrew McGill’s work to bring game theory into the context of the election. Long story short, the weird three-sided game of chicken between GOP #NeverTrump leaders, voters, and candidates can be explained by game theory, which uses mathematical concepts to model and predict interactions between multiple decision-makers. Essentially, the game of endorsements and counter-endorsements, the dance of pledges, and the calculus of electability are all based on complex webs of predictive decisions that can actually be modeled.

I’ve long been a fan of game theory, even though I’m not an expert in it. I studied the related, but infinitely less interesting field of decision theory in graduate school, and I’ve always been interested in modeling how to solve complex global problems. Andrew’s article gave me an excuse to revive my old fascination with game theory and global catastrophe.