Of course it is true that advances in genetic science have yielded some relatively simple targets to shoot for: diseases like Gaucher’s, which is caused by a hereditary deficiency in a single enzyme, and which can be treated with a synthetic version of the missing substance. But it is almost axiomatically true that simple genetic defects with debilitating or fatal consequences tend to be relatively rare. The more-prevalent conditions that we’d really like to find blockbusters to cure are, increasingly, complex metabolic processes like obesity, which may be caused by many things going wrong at once.
Drugs are still being developed for those simpler, rarer conditions—Genzyme, among other companies, has made a good living developing compounds for diseases like Gaucher’s. But the task is harder, and more expensive. A year’s worth of Gaucher’s treatment can cost $200,000.
As Longman suggests, it’s hard for big pharmaceutical companies to target such little markets. Genzyme’s $4.5 billion in annual revenue is less than Pfizer takes in just on Lipitor. Big Pharma isn’t set up for micro-research.
Then there are the customers. Drug-plan managers like Medco and Caremark have gotten more aggressive. Drugs that 10 years ago would have been blockbusters—like the anti-platelet drug Effient, Eli Lilly’s answer to Plavix—now face tough scrutiny. In fact, Medco is funding research that it hopes will make the medical case for the continued use of Plavix (which is cheaper) by most patients, while identifying the subset of patients who would benefit from the new drug. That would be great news for health-care costs, but terrible news for Eli Lilly.
The fact is, no single pipeline theory works well on its own; they all interact. A stodgier FDA can mean stuffier decisions inside companies. Smaller pipelines make for bigger mergers. Bigger companies, in turn, may mean smaller pipelines.
But the way that all these things are intertwined might actually make it easier, rather than harder, to boost our research output: any change has ripple effects. If Big Pharma can look outside its own walls more, and if the FDA can reinvent itself, the whole landscape may well alter. And though we might not quite understand our genome now, give us another decade, and it may start yielding some interesting drug targets for the diseases that we’d still very much like to cure.
Even the smaller targets we’ve already identified may yield more drugs if we can hold down the cost of clinical trials. Strategies like outsourcing our drug trials to countries with lower costs have already helped. And Vijay Vaitheeswaran, the health-care correspondent for The Economist, believes that we will soon be employing electronic reminder systems to ensure that patients take their pills, and monitoring systems that can better track side effects. These two changes alone could make smaller clinical trials more viable and effective; other innovations may follow.
None of this may work—Panacea, after all, was just a Greek goddess. But even if nothing works, look on the bright side: at least we won’t have to pay for so many pricey new drugs.