It’s worth considering that CRISPR’s recent discovery is the reason we’re even contemplating this question. Just a few years ago, a couple papers on gene-editing potential of CRISPR set off a firestorm in biology, expanding the imaginations of geneticists. The new technique makes it relatively easy to edit genes in virtually any species. And while much of the hype has focused on CRISPR’s potential to cure human diseases or to rid the world of malaria mosquitoes or revive the extinct wooly mammoth, an unappreciated effect of genetic engineering is how it changes the way we get stuff—stuff we eat, wear, use, and break. After all, conventional genetic engineering changed the face of modern agriculture for a commodity crops; for better or worse, CRISPR could do the same to niche markets, including cashmere.
So I called up Karl Spilhaus, longtime president of the Boston-based trade group Cashmere and Camel Hair Manufacturers Institute. Spilhaus was circumspect. He says the industry could be open to hair from these genetically modified goats if the quality was there. It’s just way too early to tell.
But he also pointed out why the Chinese would be interested be creating a higher-yield cashmere goat. Lately, China’s dominance of cashmere market has gotten shakier. The goats graze on windswept grasslands in China’s northwest, and they grow their cashmere undercoats in response to harsh winters. As China modernizes, the cashmere-goat-herding lifestyle is falling out of favor. “People no longer want to pursue the nomadic way of life,” says Spilhaus. “And China’s diet is going more toward meat, and goat meat is a big factor. It’s a lot easier for a herdsman to raise goats for meat than for very fine cashmere.”
Cashmere production has also taken a toll on the environment in Central Asia. Goats are destructive grazers, and their hooves destroy the root systems of grass. This double whammy has contributed to desertification in China and Mongolia. Environmentalist groups have taken stances against cashmere, which has in turn prompted efforts towards a “Sustainable Cashmere Standard.”
Here, perhaps, genetically-modified goats could find a niche. Loro Piana, an Italian company that specializes in high-end wool and cashmere, has launched a sustainability program to increase the yield of cashmere goats in China through traditional selective breeding (not gene editing), in hopes of raising fewer goats without sacrificing yield. If gene editing could accomplish the same—and achieve gains greater than through selective breeding—than perhaps you just might see a new “green cashmere.”
“Genetics always goes hand-in-hand with the environment and the production system,” says Scott Fahrenkrug, cofounder of the livestock genetics company Recombinetics. In other words, a means to alter DNA is a means to alter the living systems that create our food and clothes and everyday objects. To win over the public to this new wave of genetic engineering enabled by CRISPR, though, you need to alter it for the better. That is Fahrenkrug’s argument for Recombinetics, which uses genetic engineering to create hornless dairy cows, eliminating the painful process of dehorning cows.