Against this awesome diversity of cabbages, the deletion of one gene in Jansson’s cabbage seems almost puny in comparison. Yet CRISPR has been hyped as a world-changing innovation because it allows scientists to easily edit the genomes of nearly any species in the world: plant, animal, or even human. And CRISPR could be an opportunity to reintroduce genetic engineering to the world—to get beyond poisoned names like “GMO” and Monsanto.” To make products that exciting and novel and cooler. Way cooler than slower growing cabbage anyway.
In the early days of genetic engineering, big-ag companies focused on traits that could help farmers, either by reducing pesticides or by making weedkillers easier to use. This makes sense as farmers are the direct consumers of ag-company products, but it didn’t make a difference to you buying vegetables in the supermarket. “What’s missing in the first round of food biotechnology are traits focused on the consumer,” says Jason Kelly, CEO of Ginkgo Bioworks, a biotech company that engineers yeast to make flavors and fragrances. And so GMO corn and soybean slipped without much excitement into the food system.
With CRISPR, scientists can now genetically engineer foods with much more ease. “I think you’ll start to see more consumer facing traits because you’ll see more traits worked into plants, period,” says Kelly. CRISPR could make all sorts of fruits and vegetables more nutritious and delicious—things you might actually notice and look for. Maybe even create awesome new varieties that become as trendy as kale.
That’s the best-case scenario for public excitement about CRISPR food anyways, though the early test cases are not looking so revolutionary. The constraint, for now, is how poorly scientists understand of the genetics of most plants.
So there’s DuPont Pioneer, the first big-ag company to license CRISPR technology, which has announced its first CRISPR-edited crop will be waxy corn, expected within five years. You probably have never eaten waxy corn, at least not in recognizable corn form anyway. The variety produces a lot of starch, which is used to thicken food as well as for making textiles, glues, and paper.
Again, this makes business sense for DuPont Pioneer. It already breeds waxy corn by eliminating a specific gene through traditional breeding, and CRISPR makes it a lot easier. “We know the gene well, we know the variants of waxy well,” says Neal Gutterson, DuPont Pioneer’s vice president of R&D, on why the company chose waxy corn as its first CRISPR product. For you and me though, the benefits of CRISPR-edited waxy corn are pretty much invisible.
On the other hand, Yinong Yang, a biologist at Penn State, is using CRISPR to create a mushroom that doesn’t turn brown at the slightest touch. The project was actually the suggestion of David Carroll, president of Giorgio Fresh Mushrooms, a big mushroom grower. Yang successfully knocked out a browning gene using CRISPR, and that mushroom ended up being the test case for the United States Department of Agriculture’s policy on regulating CRISPR-edited crops. (The USDA decided these crops, where genes are deleted and no foreign DNA is added, do not fall under its regulation.)