When Steven Smit opens the freezer, liquid nitrogen pours into the room, cascading dramatically over the sides of the container before spilling across the floor. He pulls out a cylindrical goblet containing 168 straws full of genetic material. Even if the building lost electricity, he tells me, these samples would remain frozen for a month before thawing. As long as they stay frozen, they’ll last at least 50 years, maybe more.
Smit and I are in the basement of the Estonian Genome Center at the University of Tartu, which holds more than 1 million of these straws, filled with DNA, white blood cells, and plasma of more than 52,000 Estonians. These samples comprise the country’s national biobank, a program that began in 2000 to collect DNA samples from a quarter of the country’s population. These samples are used for clinical research, but equally as important, they also form the backbone of the small Baltic nation’s plans to revamp its health-care system to provide more personalized care. Already, the Estonian government has begun developing a system to making this genetic data available to citizens (and their doctors), free of charge, with plans to launch by the end of 2015.
For a country with a population of only 1.3 million people, the 52,000-strong dataset represents just 5 percent of the population, a far cry from the target of 25 percent. But Estonia’s small size, sophisticated technological infrastructure, and relatively homogenous populace make it an ideal place to put this ambitious idea to the test.
Smit tells me that there’s enough space for 15,000 more participants in this room—it holds 15 freezers, called cryovessels, each of which can hold 720 goblets. In the adjacent room, another freezer has space for up to 48,000 more DNA samples. The complex bar-coding system attached to the freezer can select, thaw, and prepare up to 5,000 samples, all stored to be ready for analysis within 24 hours.