ROBOTKoichiKamoshida:GETTY

Michael Specter of the New Yorker profiles Jay Keasling, a a professor of biochemical engineering at UC Berkeley:

“When your hard drive dies, you can go to the nearest computer store, buy a new one, and swap it out,” Keasling said. “That’s because it’s a standard part in a machine. The entire electronics industry is based on a plug-and-play mentality. Get a transistor, plug it in, and off you go. What works in one cell phone or laptop should work in another. That is true for almost everything we build: when you go to Home Depot, you don’t think about the thread size on the bolts you buy, because they’re all made to the same standard. Why shouldn’t we use biological parts in the same way?” Keasling and others in the field, who have formed bicoastal clusters in the Bay Area and in Cambridge, Massachusetts, see cells as hardware, and genetic code as the software required to make them run. Synthetic biologists are convinced that, with enough knowledge, they will be able to write programs to control those genetic components, programs that would let them not only alter nature but guide human evolution as well.

(Photo: a robot gets a tooth replacement, by Koichi Kamoshida/Getty.)

We want to hear what you think about this article. Submit a letter to the editor or write to letters@theatlantic.com.