David Moir/Reuters

Is it reductive to call art a commodity? Not necessarily.

This week, I’m sharing a variety of responses to the question, “What insight or idea has thrilled or excited you?” This installment courts courtesy of Jordan Ellenberg, a Professor of Mathematics at the University of Wisconsin–Madison, who recalls a framework for thinking about art that has stuck with him through the years––and that informs the way that he conceives of his own field. He explains:

I had an art history professor in college, Howard Lay, who was a Marxist critic, and who always reminded us that a painting was labor transformed into a physical object with the purpose of being bought and sold.  

What was great about him was that he never talked about paintings as just marketable objects.  His Marxism didn’t reduce our understanding of the paintings, it enriched it.  An object for sale is only one of many things a painting is, but if you ignore the material circumstances of the painting’s production, you’re missing something about the painting that actually matters.  

This stuck with me, and it affects how I think of the role in mathematics in the so-called real world. A legislative session is not just a series of numbers; a novel is not just a probability distribution of words; the Internet is not just a network with nodes and edges; but, still, they are mathematical entities, among all of the other things they are, and missing out on this means missing out on a valuable channel of understanding.

Email conor@theatlantic.com to share an idea or insight that has thrilled or excited you.

We want to hear what you think about this article. Submit a letter to the editor or write to letters@theatlantic.com.