Inside Google's Secret Drone-Delivery Program

The main attraction, however, is the gleaming white prototype sitting atop the wheeled table in the center of the room labeled Chickadee. It sits on its tail in the angle of repose of the Space Shuttle, nose pointed to the sky. This is the tail-sitter, just like the one that dropped the dog treats in Australia.

The design is simple. There is a tail that serves as a stand, a central plastic body, and two wings made out of foam board covered in a thin skin for protection from the elements. There are four rotors attached to the vehicle, two on the underside closer to the body, and two on the outside towards the edges of the wings.

The build quality is fascinating. From afar, it looks shiny and complete, and it’s loaded with custom-built electronics, but up close, it’s clear that the body itself is handmade and hacked together. Fingerprint smudges smear it. Some pieces have been professionally fabricated, it seems, but other bits look made in the on-site shop. It is a work in progress.

The class of vehicles that it belongs to is not common. Most flying things are fixed wing—like a plane—or some type of helicopter, which uses one or more rotors to stay in the air. To fly, fixed wing craft primarily move air horizontally, while helicopters move air vertically. The tradeoffs are pretty obvious: The fixed wing craft are more aerodynamic and efficient. They can go farther, faster with less fuel. Meanwhile, the choppers can maneuver well in many different conditions, don’t need a runway to take off or land, and can hover in place.

In the military drone world of Predators and Global Hawks, fixed wing, long-range craft predominate. In the hobbyist drone world, quadcopters like the DJI Phantom 2 and Parrot AR.Drone are most popular among enthusiasts, although a strong model-airplane community exists.

In aeronautics, hybrid craft that combine elements of fixed-wing planes and helicopters do exist, and certainly aerospace companies experimented with them. But they are more complex because they have to execute two entirely different tasks: moving air on different axes. In some cases, such as the new F-35B, Lockheed Martin built rotating jets into the plane body that can be pointed at the ground to achieve liftoff, then rotated in the air, to push the jets through the sky.

The tail-sitter configuration, in which the whole craft rotates from a vertical to a horizontal position, has also been a source of fascination through aeronautical history. The Nazis, for example, were considering such a craft. And there was an American defense program that resulted in the creation of two prototype aircraft by Lockheed and Convair. The photographs of these huge planes sitting vertically on runways—shiny and steel, unmistakably mid-century—feel retrofuturistic. None of the research efforts caught on, though, with a major problem being that there wasn’t a good way for the pilot to deal with the change in orientation.

The Lockheed XFV-1 tail sitter (US Navy).

Obviously, that’s not a problem with a drone, though. The “pilot” is housed in a desktop-class computer that sits towards the tail of the plane. The power system, batteries, cabling, and a big capacitor, sit just above it. That’s hooked to the motors, which also send back motor performance data to the flight computer. Sensor data also comes in from the inertial measurement unit (IMU) mounted to the left of the computer. The IMU uses accelerometers and gyroscopes to determine the X-Y-Z positioning of the craft, an essential part of flying. In the nose, we find the GPS unit, and in the tail, there’s a camera pointed down. There’s no on-board laser rangefinding system in the current incarnation, but there are two communications radios, one high-bandwidth for sending telemetry data, and one low-bandwidth for longer range communications.

Google has not settled on this design for all its future program development, but it has formed the platform for much of their testing. While the hardware is a significant part of the problem, they seem largely agnostic about which flying machine might ultimately serve their needs best. The real challenges, Teller and Roy insist, come in the design of the rest of the system like, for example, the delivery mechanism.

Imagine all the possible ways one might get something from high in the air down to the ground. How about a tiny parachute à la The Hunger Games? Roy’s team tried it. There was too much wind interference and they struggled with accuracy. How about literally firing them down, a ballistic approach? “We contemplated this,” Roy said. “And then Sergey walked out from under a balcony and we almost hit him in a drop test.” After that, they moved on.

Another obvious idea is to simply land the craft, drop the package, and then take off again. To test the premise, they brought in some of Google’s user experience researchers who queried people about how they might react to such a delivery.

What they found was that individuals could not be stopped from trying to reach for their packages, even if they were told that the rotors on the vehicle were dangerous, which they are.

Finally, they settled on an idea that Roy had initially resisted: winching down a line with the package on it and then winding it back up into the craft.

Mechanical engineer Joanna Cohen, trained at Cal Tech and MIT, designed the contraption. It consists of a few key parts. The first is the winch itself, which spools out the hi-grade fishing line. The second is the “egg,” the little gadget that goes down with the package, detects that it has reached the ground, releases the delivery, and signals that it should be cranked back up to the hovering UAV. If something goes wrong, there is an emergency release mechanism at the top of the line—“basically a razor blade,” Cohen told me—that allows the UAV to cut and fly.

When a package comes hurtling down, it moves at about 10 meters per second (about 22 miles per hour). When it gets close to the ground, the winch slows the fall to 2 meters per second for a relatively soft landing.

In the abstract, or under ideal conditions, this seems simple enough. But the project’s hardware lead James Burgess said that out in the world, it’s not so easy to make the deliveries work.

“If you can imagine a user case where we’re going to someone’s house, and the egg hits something—maybe it hit the power lines, maybe it hit the trees, maybe it hit the roof, maybe it hit the railing on the porch before it got to the porch. There are a lot of unknowns and environmental challenges,” Burgess said.

“So the egg is smart enough to know that it hit something, but the vehicle also knows how high it is and the winch also knows how much line it is letting out. The egg says, ‘I hit something,’ and the vehicle says, ‘But wait, you’re not far enough down yet, so keep going because probably you bounced off something and don’t arm yourself for [package] release.’ So, all of our sensors and components work together in this network to make good decisions.”

Jump to comments
Presented by

Alexis C. Madrigal

Alexis Madrigal is the deputy editor of He's the author of Powering the Dream: The History and Promise of Green Technology. More

The New York Observer has called Madrigal "for all intents and purposes, the perfect modern reporter." He co-founded Longshot magazine, a high-speed media experiment that garnered attention from The New York Times, The Wall Street Journal, and the BBC. While at, he built Wired Science into one of the most popular blogs in the world. The site was nominated for best magazine blog by the MPA and best science website in the 2009 Webby Awards. He also co-founded Haiti ReWired, a groundbreaking community dedicated to the discussion of technology, infrastructure, and the future of Haiti.

He's spoken at Stanford, CalTech, Berkeley, SXSW, E3, and the National Renewable Energy Laboratory, and his writing was anthologized in Best Technology Writing 2010 (Yale University Press).

Madrigal is a visiting scholar at the University of California at Berkeley's Office for the History of Science and Technology. Born in Mexico City, he grew up in the exurbs north of Portland, Oregon, and now lives in Oakland.

Get Today's Top Stories in Your Inbox (preview)

Is Technology Making Us Better Storytellers?

How have stories changed in the age of social media? The minds behind House of Cards, This American Life, and The Moth discuss.

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register. blog comments powered by Disqus


Is Technology Making Us Better Storytellers?

The minds behind House of Cards and The Moth weigh in.


A Short Film That Skewers Hollywood

A studio executive concocts an animated blockbuster. Who cares about the story?


In Online Dating, Everyone's a Little Bit Racist

The co-founder of OKCupid shares findings from his analysis of millions of users' data.


What Is a Sandwich?

We're overthinking sandwiches, so you don't have to.


Let's Talk About Not Smoking

Why does smoking maintain its allure? James Hamblin seeks the wisdom of a cool person.



More in Technology

Just In