Things You Cannot Unsee (and What They Say About Your Brain)

We're going to rewire your brain. Are you ready?
More

I want to show you something simple your mind can do, which illustrates a fascinating emerging theory about how the brain works. First, look at this logo of the World Cup this year.

The idea of the emblem is obvious: This is an illustration of a trophy with an abstract soccer ball on top. The colors—green, yellow, and blue—mirror the host country's flag.

Now consider this tweet from copywriter Holly Brockwell, which got 2,400 thousand retweets: "CANNOT UNSEE: the Brazil 2014 logo has been criticised for 'looking like a facepalm.'"

You know, a facepalm:

With this new cue—to see the logo as a facepalm—the yellow part becomes an arm with its hand pressed into a green head. And, as Brockwell indicated, once you see this second possibility, you can't unsee it.

People report this kind of thing all the time, and they use this same phrase: cannot unsee. Someone points out something and suddenly a secondary interpretation of an image appears. There's something a little scary about this process, even when the images are harmless. We have a flash of insight and a new pattern is revealed hiding within the world we thought we knew. It surprises us. Ah! That's not a vine, that's a snake! That's an LG logo. NO—it's Pac-Man! 

But usually the image hasn't changed; only what we think about it has. What's going on here?

I couldn't find anyone who studies the really specific cannot-unsee phenomenon that I'm talking about here. But Villanova psychologist Tom Toppino has been studying phenomena like this for decades. He sent me a famous image from the academic literature that gets at what's happening with the World Cup logo. I'm not going to tell you what it is yet, but there is a figure in this field of spots. (Don't scroll ahead!)

 

 

See it yet?

 

 

It's a dalmatian, camouflaged.

"It is hard to discern a Dalmatian standing among many black spots scattered on a white background because the part of the image corresponding to the dog lacks contours that define the edges of the dog, and the dog’s spotted texture resembles that of the background," write Dartmouth cognitive scientists Peter Tse and Howard Hughes. "Many observers find that they first recognize one part of the dog, say the head, which then makes the whole dog’s shape apparent."

Here, I'll outline it (just in case).

And if you ever encounter this image again, you will immediately see the dalmatian again. What's interesting is that the visual stimulus (the picture) doesn't change, but once your mind knows what kind of organization to impose, it's obvious that the dalmatian is there. 

"When the scene is encountered again, sensory cues will again identify high information areas, but this time the prior knowledge needed to complete the perceptual act is readily available, and the perceptual interpretation is achieved in a way that seems automatic and perhaps inevitable," Toppino said. "One general lesson of this demonstration is that perception is not the result of simply processing stimulus cues.  It also importantly involves fitting prior knowledge to the current situation to create a meaningful interpretation."

In short: what you know influences what you see.

One way psychologists and other people who study the brain have been probing these questions is through the use of ambiguous figures. These are images for which there are two totally plausible alternative interpretations. Here's a famous one that may give you nightmares: 

What do you see? I see a duck first, then a rabbit. But in a test, more people saw the rabbit first. But it's the ability to flip back and forth that gets to me. Once I saw the rabbit, I couldn't unsee it, even if I could occasionally force my perception to see the duck.

Or try this one, perhaps the most famous ambiguous image of all. 

Most people see a young woman, but some see an older woman. Others see both. For the life of me, I can't force my mind to find the older woman in the image. 

Back in the 1960s, one scientist (Gerald Fisher) even showed how to develop this kind of figure using gradations of ambiguity.

Almost everyone sees a guy in the top left box and almost everyone sees a woman in the bottom right box, but the illustrations in the middle could go either way. 

Other images are called "reversible." These are pictures that toggle between states. You see one thing, look away, then look back and see another. A lot of these fall into the optical illusion category, and psychologists like to manipulate the conditions under which one or the other will appear.

They have developed a ton of these tools to probe different areas of the mechanics of perception.

"I think one can describe the can't-unsee phenomenon as follows:  Once you interpret visual stimulus in a certain way, you'll continue to interpret it in the same way now and the next time you encounter the stimulus," Toppino said. "Ambiguous figures certainly involve some of the same processes." 

Before we get into the mechanics of those processes, let's step back for a minute and talk about a current hypothesis about the way the visual processing works. We tend to think of the eyes as sensors, like a CCD in a camera. Light falls on retinal cells and they convey that information "up" to the brain, which shows us a real-time image of our environment.

Of course, the brain is much more complex than this. When scientists look at the visual cortex, they find distinct layers that function in a rough hierarchy. Each layer handles a certain level of complexity. So, the most basic might simply process lines at a certain angle. Here, we see a famous illustration by Nobel Prize winners David Hubel and Torsten Wiesel of neural recordings in V1, the region that receives input most directly from the retina, through two areas of the thalamus known collectively as the lateral geniculate nucleus, or LGN. 

It depicts recordings from neurons that respond most strongly to diagonal lines running through their receptive field, which is represented as the dashed box. Diagonal line: heavy firing. Horizontal line: not so much. 

Jump to comments
Presented by

Alexis C. Madrigal

Alexis Madrigal is the deputy editor of TheAtlantic.com. He's the author of Powering the Dream: The History and Promise of Green Technology. More

The New York Observer has called Madrigal "for all intents and purposes, the perfect modern reporter." He co-founded Longshot magazine, a high-speed media experiment that garnered attention from The New York Times, The Wall Street Journal, and the BBC. While at Wired.com, he built Wired Science into one of the most popular blogs in the world. The site was nominated for best magazine blog by the MPA and best science website in the 2009 Webby Awards. He also co-founded Haiti ReWired, a groundbreaking community dedicated to the discussion of technology, infrastructure, and the future of Haiti.

He's spoken at Stanford, CalTech, Berkeley, SXSW, E3, and the National Renewable Energy Laboratory, and his writing was anthologized in Best Technology Writing 2010 (Yale University Press).

Madrigal is a visiting scholar at the University of California at Berkeley's Office for the History of Science and Technology. Born in Mexico City, he grew up in the exurbs north of Portland, Oregon, and now lives in Oakland.

Get Today's Top Stories in Your Inbox (preview)

Why Are Americans So Bad at Saving Money?

The U.S. is particularly miserable at putting aside money for the future. Should we blame our paychecks or our psychology?


Elsewhere on the web

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register. blog comments powered by Disqus

Video

The Death of Film

You'll never hear the whirring sound of a projector again.

Video

How to Hunt With Poison Darts

A Borneo hunter explains one of his tribe's oldest customs: the art of the blowpipe

Video

A Delightful, Pixar-Inspired Cartoon

An action figure and his reluctant sidekick trek across a kitchen in search of treasure.

Video

I Am an Undocumented Immigrant

"I look like a typical young American."

Video

Why Did I Study Physics?

Using hand-drawn cartoons to explain an academic passion

Writers

Up
Down

More in Technology

Just In