How to Turn a Pencil Into a Diamond

Spoiler: Just add some hydrogen.
More
Shutterstock/eddo

The "lead" in your pencil is misnamed. The gray stuff is actually composed of graphite, which is the stablest form of the element carbon. Its bonded atoms are arranged in planar sheets, layered on top—and aside—each other. Which explains why your pencil lead is soft: Those single-atomed planar sheets ("graphene" in the singular) can glide against each other with ease.

You know what's also made out of carbon, though? Diamonds. The objects that are celebrated for their hardness. Diamonds' strength comes from the fact that their carbon atoms are bonded in all directions; that chemical three-dimensionality is what makes them not just beautiful, but useful for industrial applications. 

Here's the question, though: Can you take the atoms in graphene and rearrange them into diamonds? In theory, you definitely could. Given graphene's stability, you would need to subject it to around 150,000 times the atmospheric pressure at the Earth's surface. Which is ... impractical. 

A team of researchers at Stanford's SUNCAT Center for Interface Science and Catalysis say they've found another way to control the structural transition between carbon atoms—at the nanoscale. The team started with a platinum support, and loaded it with several sheets of graphene. Then, they added hydrogen atoms to the topmost layer. Their finding? The hydrogen binding that ensued started, essentially, a domino effect among the atoms: Structural changes started at the top of the sample, but spread to the carbon layers underneath. And those changes transformed the carbon sheets into a new arrangement of carbon atoms—an arrangement that resembles, yep, a diamond. 

This was, it's worth noting, something of an accidental discovery: The researchers were initially testing whether the addition of hydrogen would change the chemical properties of graphene in a way that would make it useable in transistors. Instead, they learned something else that could prove useful for the material sciences. The "diamonds" that result from the hydrogenation process aren't the kind you'll find at Zales (sorry, guys); they could be the kind, though, that could prove useful in industrial applications like cutting blades and electrochemical sensors. And they're the kind that offer hope to the would-be Rumpelstiltskins of the world: You may not be able to turn straw into gold, but you can, it seems, turn a pencil into a diamond

Stanford News via Gizmodo

 
Jump to comments
Presented by

Megan Garber is a staff writer at The Atlantic. She was formerly an assistant editor at the Nieman Journalism Lab, where she wrote about innovations in the media.

Get Today's Top Stories in Your Inbox (preview)

Why Did I Study Physics?

In this hand-drawn animation, a college graduate explains why she chose her major—and what it taught her about herself.


Elsewhere on the web

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register. blog comments powered by Disqus

Video

Why Did I Study Physics?

Using hand-drawn cartoons to explain an academic passion

Video

What If Emoji Lived Among Us?

A whimsical ad imagines what life would be like if emoji were real.

Video

Living Alone on a Sailboat

"If you think I'm a dirtbag, then you don't understand the lifestyle."

Video

How Is Social Media Changing Journalism?

How new platforms are transforming radio, TV, print, and digital

Video

The Place Where Silent Movies Sing

How an antique, wind-powered pipe organ brings films to life

Feature

The Future of Iced Coffee

Are artisan businesses like Blue Bottle doomed to fail when they go mainstream?

Writers

Up
Down

More in Technology

Just In