The World's Next Atom Smasher May Be 60 Miles Long and Run Until 2075

Big Science grows ever bigger, at least in the minds of physicists. 
More
Ernest Lawrence's 11-inch cyclotron (Lawrence Livermore National Laboratory)

The particles inside Ernest Lawrence's 1931 cyclotron particle accelerator traveled just 11 inches inside the perimeter of what he called his "proton-merry-go-round." The initial size was tiny, but Lawrence's strategy was, as we might say now, scalable: If atoms could be accelerated a bit inside a device with a diameter of 11 inches, then imagine how fast one could make them fly if a bigger device was built. They quickly built a 27-inch version, then a 60-incher a few years later. 

Most simple histories of physics date the birth of Big Science to Lawrence's cyclotron. Physics needed big machines. There were things that a big machine could test that no people working unaided or with a smaller machine could. And that's never stopped being true. Bigger equals more energy equals better atom smashing. 

Which is why the Large Hadron Collider opened to such fanfare a few years ago. It's the largest particle accelerator in the world, tucked underground near Geneva. The tunnel through which particles travel is now 27 kilometers (16.8 miles) long. Lawrence's cyclotron could reach energies exceeding one million electron volts. The LHC turns up the dial to 14 trillion electron volts. That's an improvement of seven orders of magnitude. 

So, naturally, the BBC reports, physicists want to go bigger! Scientists at CERN, the European scientific agency that runs the LHC, are kicking around the idea of a 100-kilometer (62-mile) machine that would fully encircle Geneva. It might take 30 years to build, so that's why they're kicking off the next-gen thing just five years into the LHC's working lifespan. 

The larger machine could provide an eightfold improvement in the energy of the collisions. Maybe, the scientists hope, it could help us probe dark matter or get ever closer to the conditions present during the Big Bang. 

If the new collider gets built, it will probably be running in 2075. Big Science is also Long Science. 

Jump to comments
Presented by

Alexis C. Madrigal

Alexis Madrigal is a senior editor at The Atlantic, where he oversees the Technology Channel. He's the author of Powering the Dream: The History and Promise of Green Technology. More

The New York Observer calls Madrigal "for all intents and purposes, the perfect modern reporter." He co-founded Longshot magazine, a high-speed media experiment that garnered attention from The New York Times, The Wall Street Journal, and the BBC. While at Wired.com, he built Wired Science into one of the most popular blogs in the world. The site was nominated for best magazine blog by the MPA and best science Web site in the 2009 Webby Awards. He also co-founded Haiti ReWired, a groundbreaking community dedicated to the discussion of technology, infrastructure, and the future of Haiti.

He's spoken at Stanford, CalTech, Berkeley, SXSW, E3, and the National Renewable Energy Laboratory, and his writing was anthologized in Best Technology Writing 2010 (Yale University Press).

Madrigal is a visiting scholar at the University of California at Berkeley's Office for the History of Science and Technology. Born in Mexico City, he grew up in the exurbs north of Portland, Oregon, and now lives in Oakland.

Get Today's Top Stories in Your Inbox (preview)

Sad Desk Lunch: Is This How You Want to Die?

How to avoid working through lunch, and diseases related to social isolation.


Elsewhere on the web

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register. blog comments powered by Disqus

Video

Where Time Comes From

The clocks that coordinate your cellphone, GPS, and more

Video

Computer Vision Syndrome and You

Save your eyes. Take breaks.

Video

What Happens in 60 Seconds

Quantifying human activity around the world

Writers

Up
Down

More in Technology

Just In