Gravity, the Sequel: Why the Real Story Would Be on the Ground

We'd lose more than Facebook.
More
A Russian cargo craft approaches the International Space Station. (NASA)

When it came out last year, Gravity was an immediate critical and box office success. Now it's up for 10 Academy Awards, and The Atlantic's film critic predicts Alfonso Cuarón will take home the Oscar for best director.

The film's popularity drew on the star power of Sandra Bullock and George Clooney, spectacular views of the Earth from above that would make even the most skeptical believe in the Overview Effect, and thrilling collision sequences that sent space junk flying at audience’s faces in physically inaccurate but terrifying 3D.

Regardless of what happens Sunday, it’s high time that Hollywood start thinking about a sequel. For what is a big-budget blockbuster if not part of a franchise? Luckily, the makings of a sequel were tidily—and tantalizingly briefly—introduced in the first movie.

MISSION CONTROL

It’s not good. Most of our systems are going down. Debris chain reaction is out of control and rapidly expanding. Multiple sats are now down and they keep on falling.

MATT KOWALSKI

Define “multiple” sats.

MISSION CONTROL

Most of them. Telecommunications systems are gone. […]

MATT KOWALSKI

Half of North America just lost their Facebook.

This moment forms the basis of the idea for my sequel to Gravity that takes place on the planet below, imagining what happens to the rest of humankind while those realistically beautiful astronauts are up in space confronting mortality and channeling Barbarella.

What is happening on the ground at the exact moment in which astronaut Matt Kowalski dismisses the loss of “most” of Earth’s artificial satellites as a mere annoyance to social media users? 

The physical likelihood of an instantaneous cascading debris crisis as presented in Gravity has been thoroughly challenged by scientistsastronauts, and even the film’s own science advisor. However, a different look at this unlikely scenario illustrates how much of our lives are tied to outer space—unseen and largely unexamined by most of us who use satellites on a daily basis.

If all the satellites circling the planet were to fall out of the sky in the span of minutes, as they do in Gravity, we’d have a much bigger problem than a Facebook outage on our hands.

The Omnipresence of GPS

Of the many satellites that enable modern global systems of commerce, communication, energy, and transit, we are particularly reliant on GPS satellites. A “constellation” of 32 radio transmitters 20,350 km away provides timing and location services free of cost, supporting countless technological practices big and small, local and international.

GPS doesn’t just feed your personal car navigation device. Everyday technologies that seem fully ground-based, such as ATMs and domestic cell phone networks, use GPS for time and location services. Large, geographically distributed information systems require exact timing for synchronized, rapid data exchange and prevention of fraud, misdirection, and gaps in service. Cell phone towers coordinate calls using GPS, and many ATMs timestamp withdrawal information using either onboard GPS devices or connections to GPS-enabled networks, allowing banks to keep tabs on the flow of cash. (Time must be disseminated.)

The nation’s energy network depends on GPS for precise time and position data in the distribution of power from plants to the grid. Transportation systems from passenger trains to ocean freighters make use of the same services to move people and goods across vast distances on strict timetables. Facilitated by GPS, these distribution networks have grown in reach and load, achieving precision on the order of nanoseconds in the coordinated movement of massive quantities of information and material.

An artist's conception of GPS (NASA)

Anyone who has taken a flight through a major airport has seen first-hand how satellites have helped some industries field larger and larger loads. GPS has been deeply embedded in civil aviation, beyond navigation alone. While pilots and controllers use point-to-point radio to communicate, GPS keeps the messages moving and organized at most large airports. With the next generation system of civil aviation (“NextGen”) currently rolling out, GPS will replace radar as the main mechanism by which pilots and controllers know where airplanes are, both in the air and on the ground.

Older ground-based navigation systems such as VOR (VHF Omni Directional Radio Range) are being scaled down, and alternate systems such as LORAN (LOng RAnge Navigation) and its spinoffs have not received funding in the current American budget climate. Alternate surveillance systems that use radar and distance measuring equipment will remain in service, but fewer aviators will have regular practice using them and may lose expertise that would come in handy in the event of satellite loss. Pilots are trained to field problems in the airplane, but in the case of total, instantaneous GPS failure nearly every system will go wrong at once. Combined with hobbled communications and a compromised ability for pilots and controllers to “see” each other, pilots trained under NextGen rules may be severely impaired without satellites.

GPS signals are susceptible to radio jamming, and past incidents of signal loss illustrate on a local level what would happen should we lose the GPS constellation. North Korea has been accused of jamming signals in South Korea, and the U.S. Navy accidentally jammed San Diego in 2007. Should these effects take place on a global scale with the total loss of GPS satellites, the outcome would likely be catastrophic.

Remote Sensing and Communications

On February 19, NASA's Aqua satellite took this false color imagery of the Great Lakes to investigate how they had iced over.  

Satellites don’t show up in action movies during scenes of search-and-rescue or disaster response scenes. But remote sensing from space plays a major role in predicting disaster, such as tracking a brewing hurricane or the movements of a fire. Remote sensing data also provides crucial information after a crisis, such as monitoring the spread of an oil spill. Recent events in Atlanta aside, weather satellites have made a huge difference in our ability to predict and react to potentially dangerous storms. Their loss would be disastrous, as reflected in the legislative debate about the National Oceanic and Atmospheric Administration (NOAA) satellite program and the aging American weather satellite fleet.

Satellites also allow us to monitor space weather, providing forecasts much like terrestrial meteorology—except they measure and predict radiation emitted by the Sun. Should a major solar storm send large amounts of radiation our way, like one did in 1859, Earth’s electrical systems could be in trouble. Space weather forecasting from satellites affords us a degree of warning so that impacted industries can batten the hatches, so to speak.

When disasters hit, news reports from far-flung locations instantly update the American public. The loss of communications satellites beaming content across large distances would mean no more reporters in the field to keep us immediately informed on the latest news from around the world. Humanitarian relief would be less efficiently coordinated. And of course, global communication systems that have helped shrink the world in space and time over the last half century would falter. The end of the satellite age could mean the end of the modern global age as we know it.

Satellites provide a plethora of data to scientists on the ground—those who look out, and those who look down at the planet. Earth scientists, from biologists and hydrologists to archaeologists and climatologists, benefit from data gathered by remote sensing satellites. By placing space telescopes above the pesky, obscuring atmosphere, astronomers have been able to see further and more clearly than they could before the space age, opening up new parts of the electromagnetic spectrum to observation. Space science researchers who use data from deep space probes rely on orbiting satellites to relay information across the void. It might not be a life-or-death situation should we lose these links, but the thought of an already marooned Mars rover going mute is almost too much to bear.

Jump to comments
Presented by

Lisa Ruth Rand is a doctoral candidate at the University of Pennsylvania, where she studies the environmental history of near-Earth space.

Get Today's Top Stories in Your Inbox (preview)

What Is the Greatest Story Ever Told?

A panel of storytellers share their favorite tales, from the Bible to Charlotte's Web.


Elsewhere on the web

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register. blog comments powered by Disqus

Video

The Death of Film

You'll never hear the whirring sound of a projector again.

Video

How to Hunt With Poison Darts

A Borneo hunter explains one of his tribe's oldest customs: the art of the blowpipe

Video

A Delightful, Pixar-Inspired Cartoon

An action figure and his reluctant sidekick trek across a kitchen in search of treasure.

Video

I Am an Undocumented Immigrant

"I look like a typical young American."

Video

Why Did I Study Physics?

Using hand-drawn cartoons to explain an academic passion

Writers

Up
Down

More in Technology

Just In