Q: Why Do Animal Cells Stay So Small? A: Gravity

Cutting-edge technology leads to a big discovery. 
Cells comprising liver tissue (Shutterstock/Pan Xunbin)

The typical animal cell measures about 10 microns, or 0.001 centimeters, in diameter. Which is unsurprising—cells are small! that's sort of the point!—and, at the same time, curious. Animals exhibit nothing if not biodiversity, yet the building blocks we all share are, with very few exceptions, astoundingly similar in size. So: Why? Why do cells stay so small? Why don't they generally, across the vast majority of animal life on Earth, become any larger than a hundredth of a millimeter? 

Biologists have generally attributed the limit to the difficulty that large-volume cells face in obtaining nutrients. But researchers at Princeton are now offering another answer, one that has nothing to do with food and everything to do with force: gravity. Clifford Brangwynne, an assistant professor of chemical and biological engineering and the scientist who led the research, has put bioengineering techniques to use to suggest that it's gravitational force that imposes the size limit on cells. The rare cells that are larger than 10 microns in diameter, his work has found, seem to be the exceptions that prove the rule: They have evolved as they have in part to support their contents against gravity.

Which is a major finding. Size, biologically, matters: The forces of nature are scale-dependent, which means that different forces become relevant—and essentially irrelevant—at different length scales. So the quantum effects that exert themselves on matter at microscopic scales average out as you move up to larger length scales. And gravity's force, in turn, becomes negligible at a certain smallness of scale. Biologists have long assumed that animal cells fall below that point—that they are simply too small to be affected by gravity. So while, at a tissue level, sure, cells are subject to gravity, at the level of the tiny individual, the thinking went, gravity wasn't one of the forces that cells are subject to. In microbiology, "we really have never, in my experience, worried about gravity—or thought about it," Brangwynne told me. 

Brangwynne's work, published in Nature Cell Biology, may change that. And it may offer, as well, an answer to a longstanding mystery about where that line may be drawn: At what point, exactly, does gravity stop mattering to matter? 

Brangwynne came to his findings with the help of some fairly ingenious technology. He also came to them somewhat unexpectedly. His previous work had shown that certain large particles within cells act essentially like water droplets, merging as they contact each other. In cells' nuclei, however, something seemed to be keeping them from fusing. To follow up on that observation, Brangwynne and his co-author, graduate student Marina Feric, studied egg cells of the African clawed frog, which are, like other eggs, anomalous in that they can reach sizes of 1 millimeter in diameter. The pair were studying, in particular, how the eggs are engineered: They wanted to explore why the nuclei of those larger cells contain, compared to smaller cells, a significantly higher concentration of actin, the protein that forms microfilaments in eukaryotes

Presented by

Megan Garber is a staff writer at The Atlantic.

How to Cook Spaghetti Squash (and Why)

Cooking for yourself is one of the surest ways to eat well. Bestselling author Mark Bittman teaches James Hamblin the recipe that everyone is Googling.

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register.

blog comments powered by Disqus


How to Cook Spaghetti Squash (and Why)

Cooking for yourself is one of the surest ways to eat well.


Before Tinder, a Tree

Looking for your soulmate? Write a letter to the "Bridegroom's Oak" in Germany.


The Health Benefits of Going Outside

People spend too much time indoors. One solution: ecotherapy.


Where High Tech Meets the 1950s

Why did Green Bank, West Virginia, ban wireless signals? For science.


Yes, Quidditch Is Real

How J.K. Rowling's magical sport spread from Hogwarts to college campuses


Would You Live in a Treehouse?

A treehouse can be an ideal office space, vacation rental, and way of reconnecting with your youth.

More in Technology

Just In