Update: Chromosomes Are Shaped Less Like X's, More Like O's

Tic-Tac-Toe, it turns out, is weirdly prescient about cell biology. 
Google

I just did a Google Image search for "chromosome," and the images above are the top returnsA sea of X's: the familiar shape of the chromosome. Some detailed, some vague; some dark, some colored; some in context, some out of it. All of them, however, ex-y. Which is both expected and appropriate, of course: Chromosomes, those tidy tangles of DNA, arrange themselves in X shapes within the cells they both manufacture and populate. Everyone knows that.

Well, we do ... until we don't. A team of researchers at the Babraham Institute in the U.K., working with the University of Cambridge and the Weizmann Institute, has developed a new method for visualizing chromosomes' shape -- one that relies not on microscopes and x-rays, but rather on 3D modeling. The technique involves measuring chromosomes within single cells, thousands of times over, at the molecular level. Combine those measurements, render them as images on powerful computers … and you have the world's first 3D pictures of chromosomes.

And! The images reveal chromosomes that are not at all X-shaped. In fact, they're pretty much the opposite: They're spheroid. Their DNA strands seem to arrange themselves, most of the time, into loose little blobs of genetic material.

So why the X-shape that has become so familiar? Because chromosomes do take that form -- during cell division. As Peter Fraser, one of the project's researchers, explains it, "This microscopic portrait of a chromosome actually shows a structure that occurs only transiently in cells – at a point when they are just about to divide." So it's not that the X-based images of the chromosomes have been wrong; it's that they've been incomplete. Sometimes, it's X's; most often, however, it's O's. In life's grand game of tic-tac-toe, the O's have totally won. 

Fraser and his team have just published the results of their research in the journal Nature. And their work serves not only as (potentially) a basis for a more accurate understanding of DNA, but also as a nice reminder: When it comes to science, the line between "known" and "unknown" can be thin. As thin, sometimes, as a tangle of DNA that goes from X-shaped to ex-shaped in the space of a single new technology.

Presented by

Megan Garber is a staff writer at The Atlantic.

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register with Disqus.

Please note that The Atlantic's account system is separate from our commenting system. To log in or register with The Atlantic, use the Sign In button at the top of every page.

blog comments powered by Disqus

Video

A New York City Minute, Frozen in Time

This short film takes you on a whirling tour of the Big Apple

Video

What Happened to the Milky Way?

Light pollution has taken away our ability to see the stars. Can we save the night sky?

Video

The Faces of #BlackLivesMatter

Scenes from a recent protest in New York City

Video

Ruth Bader Ginsburg on Life

The Supreme Court justice talks gender equality and marriage.

Video

The Pentagon's $1.5 Trillion Mistake

The F-35 fighter jet was supposed to do everything. Instead, it can barely do anything.

More in Technology

Just In