Toward an Ecological Model of Research and Development

The choice between basic and applied research is a false one.

The belief that basic or pure research lays the foundation for applied research was fixed in science policy circles by Vannevar Bush's 1945 report on Science: The Endless Frontier. Unfortunately, his unsubstantiated beliefs have remained attractive to powerful advocates of basic research who seek funding for projects that may or may not advance innovation and economic growth. Shifting the policy agenda to recognize that applied research goals often trigger more effective basic research could accelerate both applied and basic research.

Close integration of applied and basic research was clear in Thomas Jefferson's masterful mission statement to Merriwether Lewis. The "object of your mission is to explore" and find "the most direct & practicable water communication across the continent, for the purpose of commerce." At the same time, Jefferson stipulated that Lewis make geographic, geological, astronomical, biological, meteorological, and other observations to add to basic natural science knowledge. Jefferson also detailed the social science research agenda for encounters with Indian nations, requiring Lewis to record their languages, traditions, laws, customs, and religion. Jefferson's eagerness to learn about the tribes extended to their agricultural practices, plus hunting and fishing implements. He believed that there was much to learn from how the Indian nations made their clothing, built their housing, and treated their diseases.

The Lewis & Clark expedition (1804-1806) was a remarkable success for achieving many of the goals set for them. Their triumph helped expand commerce while advancing research, thereby creating a national sensation.

More than a century and a half later, John Kennedy pledged "to go to the moon in this decade" by engaging in "the greatest and most complex exploration in man's history." Kennedy focused on how "The growth of our science and education will be enriched by new knowledge of our universe and environment, by new techniques of learning and mapping and observation, by new tools and computers for industry, medicine, the home as well as the school."

What is striking about both Jefferson's and Kennedy's challenges is how they both tied applied research goals to basic scientific pursuits, with the expectation that this combination would also have high payoffs in commerce, while stimulating further efforts in science and engineering. These visionary leaders believed that challenging applications and basic science went well together, stimulating progress toward both goals.

However, these Presidential beliefs in synergistic interaction between basic and applied research are not universal. For the past 70 years there have been strong advocates who believed that basic research precedes applied research. This suggestion of the primacy of basic research has shaped research policy, government funding, educational programs, and more. While there are clear differences between the methods of basic and applied research, an ecological model that promotes stronger interdependence may lead to more rapid advances in both arenas.

Vannevar Bush's Linear Model

Promoting basic research and broad application of innovative technologies have sometimes been seen as separate, or connected by the "linear model" in which basic research leads to applied research, then commercial development, and finally production and operation (Figure 1). The linear model gives precedence to basic research, seeing it as the forerunner of applied research.


Figure 1: Linear Model: Simple but incorrect, misleading model that rarely works.

The linear model was given strong support by Vannevar Bush, who as President Roosevelt's science advisor and head of the Office of Scientific Research and Development wrote the influential 1945 report Science: The Endless Frontier. He described basic research as "pure research" and argued that "Pure research is research without specific practical ends," which often results in surprising outcomes: "Many of the most important discoveries have come as a result of experiments undertaken with quite different purposes in mind." Bush aligned himself with those who described brilliant pure or basic science researchers, who spawned breakthrough ideas, made clever innovations, and spotted fresh patterns. Of course, sometimes the value of a basic research effort might take decades to be appreciated and applied, but advocates of basic research are confident in the payoffs from such investments.

He thought university researchers needed special protection from administrative interference, confidently promising that "statistically it is certain that important and highly useful discoveries will result from some fraction of the work undertaken; but the results of any one particular investigation cannot be predicted with accuracy."

Bush described applied research in a positive way, writing that "applied research and development differs in several important respects from pure science. Since the objective can often be definitely mapped out beforehand, the work lends itself to organized effort. If successful, the results of applied research are of a definitely practical or commercial value." It is ironic that Bush saw little possibility that applied research could stimulate pure or basic research. The irony is striking since his book is filled with examples of how war-time needs, especially in medicine produced remarkable basic research payoffs. Of course the most compelling example from Bush's own experience is the Manhattan Project, in which the practical goal of building an atomic bomb invigorated basic research in physics, materials engineering, mathematics, chemistry, and many other fields.

The irony is not only that Bush emphasized the flow from basic to applied research, but he also sternly warned that "applied research invariably drives out pure." This disturbing statement, so at odds with much of the historical evidence, seems even more troubling to contemporary readers.

The linear model, which assumes that basic research precedes applied research, is widely accepted, especially by basic science researchers who want funding with few restrictions and no promises of productive outcomes. The rare Einstein, Curie, or Hawking may have earned the expectation of unrestricted funding, but for the vast population of modern researchers this expectation is inappropriate.

New Views of the Relationship between Basic and Applied Research

Critics of Bush's views cited the many cases of scientific progress that were stimulated by applied problems. They suggest that the path to commercial success is not to promote technology transfer from universities to industry, but to get industry to set the research agenda based on problems that they face. This "reverse linear model" often generates an appropriate solution to the problem as well as substantive advance in basic research (Figure 2). The reverse linear model, achieved by closely situating applied and basic researchers was a central theme at Bell Labs, as described in John Gernter's bestseller, The Idea Factory (2012).


Figure 2: Reverse Linear Model: Listen to industry problems and solve them collaboratively, thereby substantially reducing technology transfer problems.

Jump to comments
Presented by

Ben Shneiderman is a professor of computer science at the University of Maryland, the founding director of the Human-Computer Interaction Lab, and a member of the National Academy of Engineering. His most recent book is Analyzing Social Media Networks With NodeXL.

Get Today's Top Stories in Your Inbox (preview)

Juice Cleanses: The Worst Diet

A doctor tries the ever-popular Master Cleanse. Sort of.

Elsewhere on the web

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register. blog comments powered by Disqus


Why Did I Study Physics?

Using hand-drawn cartoons to explain an academic passion


What If Emoji Lived Among Us?

A whimsical ad imagines what life would be like if emoji were real.


Living Alone on a Sailboat

"If you think I'm a dirtbag, then you don't understand the lifestyle."


How Is Social Media Changing Journalism?

How new platforms are transforming radio, TV, print, and digital


The Place Where Silent Movies Sing

How an antique, wind-powered pipe organ brings films to life


The Future of Iced Coffee

Are artisan businesses like Blue Bottle doomed to fail when they go mainstream?



More in Technology

Just In