The Meaning of (Making) Life

A synthetic biologist explores the intersection of culture, art, and microbes -- and cheese too.

Christina Agapakis is a rising star among the new generation of biology researchers. Trained in the science of custom-building organisms known as synthetic biology, the UCLA researcher likes to think about the way her field intersects with culture and industry more broadly.

Case in point: Through a program of the BioBricks Foundation, she worked with artist Sissel Tolaas to create cheeses cultured with the microbes that help produce our body odor. The project highlights the meaning that humans assign to the productions of the invisible world of bacteria. And Agapakis wants us to rethink our relationships with the microbial communities that live in and around us.

"Re-contextualizing these ostensibly 'bad' smells, we saw that when the odor is in cheese it smells good and it's a sign of culture and good taste. But the same smell on a body is disgusting," she told me an interview for our most recent issue. "By making cheese using bacteria from the body, we're showing that we should be able to think about the microbes in our lives in different ways."

Since the beginning of the 20th century, we've learned so much about the machinery that powers life, but the larger societal and political issues that the biosciences raise receive far less attention than technological developments like smartphones or social networks. Biology is so complex that we need people like Agapakis who provide pathways towards a better understanding of how we interact with all the life we can't see.

In this extended remix of the print Q&A, we talk about the long-term potential of biology, that cheese project, and the potential to engineer the microbial ecosystems of our digestive tracts.

People have big expectations for biology in the 21st century. Many say that biotech will be as big as information technology was in recent decades. Is that true?

People want synthetic biology and biotechnology to be the next industrial revolution. Looking back, people have tended over time to imagine bodies functioning in ways that were analogous to the dominant technological paradigm of their day, whether that was steam engines or computers. I hope that soon biology will be the technology we judge things by. Maybe we're going to see industry and computational stuff start to look more like biology, rather than biology looking more like industry and computation.

What would it mean to have industry look like biology?

Well, people are trying to push synthetic biology [in the direction of] the chemical industry--to replace any petrochemical with a biological process. You could have a vat of bacteria that's going to make the chemicals that you want. That model can be good, but it's limited. It isn't trying to rethink the way we use chemicals and do industry. Daisy Ginsberg, an artist and a writer and designer, says, "It's a disruptive technology that doesn't really disrupt anything." If we still have gasoline, just made of bacteria in a vat, that may not be the right vision for the future.

People talk about creating standard DNA "parts," called BioBricks. What are those?

The idea behind BioBrick parts is that you can have a collection of pieces of DNA that have specific useful functions---off-the-shelf DNA parts. You are able to say, "Okay, I need a part that is fluorescent," or "I need a part that will activate in response to this chemical." Then you can mix and match: you put them both in a bacterium, and then you have fluorescence in response to some chemical--so we can have this kind of RadioShack.

It seems like the human body is getting more attention as an ecosystem of microbes and human cells working together. You explored this in a fascinating way by making cheese with human skin bacteria, right?

I was getting really into microbial ecology when I started a design fellowship with an arts and science group, Synthetic Aesthetics. I was moving away from the BioBrick model and into mixing and matching of whole cells. I was paired with Sissel Tolaas, who is an odor researcher. She calls herself a professional provocateur-- she lives between a lot of different fields, from perfumery and odor science to in-your-face art projects. She'll do things like paint people's body odors on walls in galleries.

Presented by

Saving the Bees

Honeybees contribute more than $15 billion to the U.S. economy. A short documentary considers how desperate beekeepers are trying to keep their hives alive.

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register.

blog comments powered by Disqus


How to Cook Spaghetti Squash (and Why)

Cooking for yourself is one of the surest ways to eat well.


Before Tinder, a Tree

Looking for your soulmate? Write a letter to the "Bridegroom's Oak" in Germany.


The Health Benefits of Going Outside

People spend too much time indoors. One solution: ecotherapy.


Where High Tech Meets the 1950s

Why did Green Bank, West Virginia, ban wireless signals? For science.


Yes, Quidditch Is Real

How J.K. Rowling's magical sport spread from Hogwarts to college campuses


Would You Live in a Treehouse?

A treehouse can be an ideal office space, vacation rental, and way of reconnecting with your youth.

More in Technology

Just In