In All Probability: Climate Change and the Risk of More Storms Like Sandy

By modeling climate change's local effects, we may finally be able to grasp what it means.



Earlier this year, the journal Nature Climate Change published a paper that measures hurricane behavior in our warming world. The study was as innovative as it was prescient. Combining models to simulate thousands of hurricanes in likely future climates, the authors discovered that New York City, their test case, was at risk. And increasingly so.

The city's most severe storm flooding events historically have been quite rare. According to the paper, hurricane storm surge -- roiling coastal waters driven inland which are responsible for most of the devastation and destruction during storms -- can, in New York City, reach the exceptional height of about six feet once every century, and 10 feet once every 500 years. But as the Earth warms and sea levels rise, the study found, over the next few generations these extreme swells could batter New York Harbor as often as once every 3 years and 25 years, respectively.

That was in February.

Then, on the night of October 29, Hurricane Sandy drove a 14-foot wall of seawater deep into Brooklyn and lower Manhattan, flooding seven subway tunnels and shorting most circuits below Midtown. It eclipsed the city's previous storm surge record, set in the early 19th century, by nearly three feet, leaving many New Yorkers paralyzed, wet, and in the dark.

"This is not just coincidence," Ning Lin, the paper's lead author and assistant professor of civil and environmental engineering at Princeton University, told me. "We knew that New York City was vulnerable."

At the spout of a funnel formed by Long Island and the New Jersey Shore, the so-called New York Bight renders lower Manhattan a basin for water with no place else to go. A stunted bulkhead, not quite five feet above mean sea level, does little to safeguard the low-lying coast. (Even with all of these threats, the city only ranks eighth on a list of U.S. areas most vulnerable to hurricanes.)

"Already, a bad storm today is way beyond our ability to deal with effectively," Michael Oppenheimer, one of Lin's co-authors and a professor of geosciences and international affairs, also at Princeton, told me. "So what does that say about a bad storm -- and the much worse risks we face -- years from now?"

Years from now, though, is in fact when these findings may be confirmed. Only a string of Sandys could verify such a study, which forecasts trends, not any specific hurricane which might define them. (That Sandy was a hybrid of hurricane and mid-latitude storm, formed under an unlikely confluence of climatic events, puts it somewhat outside the study's scope, too.) The temptation to view Sandy, or any major storm, as having been foretold by climate scientists, must be resisted.

Capturing the effect of climate change on such high-impact weather is, in any case, not about predicting storms, but assessing risk -- the likelihood that, as burning fossil fuels continue to change the Earth's climate, these storms could strike more frequently and more violently. The business of climate science is probability, and rightfully so, because once predictions come to pass, it's too late.

Lin appreciates why this may be difficult to grasp. "Most people think because we had Irene last year, and now Sandy this year, it's because of climate change," she said. "They think risk is increasing only when they see storms. And then after a few years, they forget."

According to recent research in climate psychology, cognitive deficiencies may be numbing us to the urgency of such intangible, global threats. Complex dynamics like those at play in climate change -- worsening gradually and posing consequences mostly in the distant future -- are not easily factored in to our present deliberations. As a result, we hold out for the singular maelstrom to sound the alarm, which, in this case, is like waiting for the straw man: Its occurrence wouldn't wholly reflect the phenomenon we're looking for, and so its absence shouldn't be seen as indicative that the models are wrong.

But climate psychologists also find that this simple-mindedness is not entirely our fault. It depends on how the questions are framed -- how a reader's mind is "primed" by certain events or exercises, before approaching the issue. And one way to frame climate change is to model the science. We may find that how climate scientists study the planet today, applying innovative techniques to quantify local risk, is more palpable than the diffuse issues we couldn't quite grasp.

Anthropogenic global warming is, admittedly, an abstract phenomenon. It does not create individual hurricanes, but instead, more diffusely, ratchets up their threat. As the atmosphere warms it retains more moisture which, carried to landfall, can then be hurled ashore in heavier wind and rain. And according to one accepted theory, the so-called "heat-engine" hypothesis first suggested by Kerry Emanuel, another of Lin's co-authors and a professor of atmospheric science at MIT, the warmest water in more than half a century could be amplifying storms' power source.

"That's a good starting point for understanding how climate change might affect future hurricanes," James Elsner, a professor of geography at Florida State University, told me. His 2008 study of ocean temperature and hurricane strength was consistent with this idea. "But just because stronger storms are getting stronger doesn't mean we're getting more storms."

The latest climate models appear to be reaching agreement on this issue. Christopher Landsea, the science and operations officer at the National Hurricane Center, in Miami, is a leading expert on hurricane forecasting. In an opinion piece for the National Oceanic Atmospheric Administration, he aggregates recent studies on hurricanes and global warming.

Presented by

Dorian Rolston is a research specialist at Princeton University's Woodrow Wilson School of Public and International Affairs.

How to Cook Spaghetti Squash (and Why)

Cooking for yourself is one of the surest ways to eat well. Bestselling author Mark Bittman teaches James Hamblin the recipe that everyone is Googling.

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register.

blog comments powered by Disqus


How to Cook Spaghetti Squash (and Why)

Cooking for yourself is one of the surest ways to eat well.


Before Tinder, a Tree

Looking for your soulmate? Write a letter to the "Bridegroom's Oak" in Germany.


The Health Benefits of Going Outside

People spend too much time indoors. One solution: ecotherapy.


Where High Tech Meets the 1950s

Why did Green Bank, West Virginia, ban wireless signals? For science.


Yes, Quidditch Is Real

How J.K. Rowling's magical sport spread from Hogwarts to college campuses


Would You Live in a Treehouse?

A treehouse can be an ideal office space, vacation rental, and way of reconnecting with your youth.

More in Technology

Just In