'We Took a Rat Apart and Rebuilt It as a Jellyfish'

More

Scientists from Harvard and Caltech announce the creation of a bioengineered, swimming jellyfish made from rat cells.

You begin with an eight-armed silicon membrane. You harvest rat heart-muscle cells and organize them in a disctinct jellyfish-like pattern on your membrane. Lastly, you set your creature free in a vat of fluid, and schock it with electricity. You watch as your "jellyfish" swims away.

Scientists from Harvard and Caltech did just that, and they are calling their rat-celled, bioengineered jellyfish a "medusoid." They hope that by studying its pumping motions, they will be able to extrapolate a better understanding of another pump -- the human heart. Their paper appeared in an advance online version today in Nature Biotechnology.

As Ed Yong reports:

"Morphologically, we've built a jellyfish. Functionally, we've built a jellyfish. Genetically, this thing is a rat," says Kit Parker, a biophysicist at Harvard University in Cambridge, Massachusetts, who led the work.

...

In 2007, Parker was searching for new ways of studying muscular pumps when he visited the New England Aquarium in Boston, Massachusetts. "I saw the jellyfish display and it hit me like a thunderbolt," he says. "I thought: I know I can build that." To do so, he recruited John Dabiri, a bioengineer who studies biological propulsion at the California Institute of Technology (Caltech) in Pasadena. "I grabbed him and said, 'John, I think I can build a jellyfish.' He didn't know who I was, but I was pretty excited and waving my arms, and I think he was afraid to say no."

Janna Nawroth, a graduate student at Caltech who performed most of the experiments, began by mapping every cell in the bodies of juvenile moon jellies (Aurelia aurita) to understand how they swim. A moon jelly's bell consists of a single layer of muscle, with fibres that are tightly aligned around a central ring and along eight spokes.

To make the bell beat downwards, electrical signals spread through the muscle in a smooth wave, "like when you drop a pebble in water", says Parker. "It's exactly like what you see in the heart. My bet is that to get a muscular pump, the electrical activity has got to spread as a wavefront."

Down the road, the team plans to build a medusoid that uses human heart cells, Yong reports. "You've got a heart drug?" Parker told Yong. "You let me put it on my jellyfish, and I'll tell you if it can improve the pumping."

Jump to comments
Presented by

Rebecca J. Rosen is a senior editor at The Atlantic, where she oversees the Business Channel. She was previously an associate editor at The Wilson Quarterly.

Get Today's Top Stories in Your Inbox (preview)

The Time JFK Called the Air Force to Complain About a 'Silly Bastard'

51 years ago, President John F. Kennedy made a very angry phone call.


Elsewhere on the web

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register. blog comments powered by Disqus

Video

Adventures in Legal Weed

Colorado is now well into its first year as the first state to legalize recreational marijuana. How's it going? James Hamblin visits Aspen.

Video

What Makes a Story Great?

The storytellers behind House of CardsandThis American Life reflect on the creative process.

Video

Tracing Sriracha's Origin to Thailand

Ever wonder how the wildly popular hot sauce got its name? It all started in Si Racha.

Video

Where Confiscated Wildlife Ends Up

A government facility outside of Denver houses more than a million products of the illegal wildlife trade, from tigers and bears to bald eagles.

Video

Is Wine Healthy?

James Hamblin prepares to impress his date with knowledge about the health benefits of wine.

Video

The World's Largest Balloon Festival

Nine days, more than 700 balloons, and a whole lot of hot air

Writers

Up
Down

More in Technology

Just In