The Case (Study) of Arsenic Life: How the Internet Can Make Science Better

At every step of the way, newer tools for conveying and analyzing science had better results than more traditional methods.

503457main_arsenic_full-615.jpg

The microbe in question (NASA)

This weekend brought to a close the year-and-a-half-long arsenic-life saga. Or really I should say #arseniclife saga, as the Twitter hashtag that trailed every turn is itself a sort of metonym for the greater story -- not the story of a strange microbe that lived in Mono Lake, but of how science works, and sometimes doesn't, in these early times of online publishing, analysis, and, of course, chatter.

Here's how it all came to an end: On Sunday, while scientist Rosie Redfield spoke at the Joint Congress of Evolutionary Biology, two papers, one by her and her colleagues and another by a separate group, were published on the website of the journal Science. Together, the papers represent a summary refutation of the claims, first made in December of 2010, that the bacteria (GFAJ-1) could use arsenic to build its DNA, not phosphorous as is the case with all other life on Earth. As it turns out, GFAJ-1 is just like the rest of us -- phosphate-dependent -- and doesn't represent some strain of alien or separately evolved life here on Earth, as the existence of arsenic-based life implies. Though the papers were not set to be published until later this month, Science released them early -- during Redfield's talk -- in a move that surprised even Redfield herself, and garnered a cheer from the live audience in Ottawa

This is all as it should be, right? As Redfield told the Washington Post's Marc Kaufman, "A very flawed paper was published and received an inordinate amount of publicity. ... Now refutations of the work by two independent research groups are appearing in the same high-profile journal, and the refutations are being well publicized. This is how science is supposed to work."

But there's something lacking in this. All is not well just because it has ended well. Perhaps that's true for the scientific core of the story, the narrow question of whether GFAJ-1 depends on phosphate. But the bigger story -- how the original, shoddy paper was hyped by NASA and Science beyond responsible levels; how the authors of that paper handled the criticism; right up until how Science kept the new papers and their authors under lock and key until last night, even while Redfield's paper was already available on arXiv.org; and, notably, how the open fora of science blogs and Twitter provided a platform for public analysis and scrutiny -- this story demonstrates the large problems with the process of how science is packaged and delivered, and how the tools of the web could be deployed to make that process better, smarter, and more efficient.

The problems showed their fanged teeth right from the get-go, on November 29, 2010, with the news arriving in the form of a NASA press release. Okay, okay I jest. No news really arrived in the press release. Rather, NASA announced that they *would be announcing later* "an astrobiology finding that will impact the search for evidence of extraterrestrial life."

This, predictably, had the entire Internet dying with anticipation. Could there be a more tantalizing press release? Jason Kottke asked, "Has NASA discovered extraterrestrial life?" Gawker followed suit: "Did NASA discover life on one of Saturn's moons?" Alexis Madrigal jumped in and ruined all the speculation-fun, tweeting, "I'm sad to quell some of the @kottke-induced excitement about possible extraterrestrial life. I've seen the Science paper. It's not that." But that wasn't anywhere near the end of it: Four days later -- once the paper was released, embargo lifted, science revealed -- the news of arsenic-based life (even arsenic-based life here on Earth) was still pretty dope. As Phil Plait of Bad Astronomy wrote, "First off, just to be straight and to dispel the rumors: this is not aliens on Titan, or Mars, or anywhere else. This bizarre life form was found right here on good ol' Earth. And don't be disappointed: this is still pretty cool news." Life, whatever that magical quality is, was more diverse, resilient, and possible than we had ever previously had reason to believe.

But pretty soon even the Earth-based claims began to fall apart, most prominently and thoroughly on Rosie Redfield's blog, RRResearch, where she wrote, NASA's shameful analysis of the alleged bacteria in the Mars meteorite made me very suspicious of their microbiology, an attitude that's only strengthened by my reading of this paper. Basically, it doesn't present ANY convincing evidence that arsenic has been incorporated into DNA (or any other biological molecule)." And then she proceeded to eviscerate the paper's claims. Six months later, she, along with seven others, published in Science their criticisms of the study, and the study's authors, led by Felisa Wolfe-Simon, responded at length. As Carl Zimmer wrote in Slate at the time:

For scientists who only get their information in print, this may be the first they've heard anything about a longstanding controversy that's come to be known over the past six months by its Twitter hashtag: #arseniclife.

For those of us who have been tracking #arseniclife since last Thanksgiving, however, today comes as an anticlimax. There's not much in the letters to Science that we haven't read before. In the past, scientists might have kept their thoughts to themselves, waiting for journals to decide when and how they could debate the merits of a study. But this time, they started talking right away, airing their criticisms on the Internet.

Now today, more than a year later, the fruits of some of those criticisms have been published on the Science website, pushed out from under their own embargo by Redfield's talk.

Presented by

Rebecca J. Rosen is a senior editor at The Atlantic, where she oversees the Business Channel. She was previously an associate editor at The Wilson Quarterly.

Saving the Bees

Honeybees contribute more than $15 billion to the U.S. economy. A short documentary considers how desperate beekeepers are trying to keep their hives alive.

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register.

blog comments powered by Disqus

Video

How to Cook Spaghetti Squash (and Why)

Cooking for yourself is one of the surest ways to eat well.

Video

Before Tinder, a Tree

Looking for your soulmate? Write a letter to the "Bridegroom's Oak" in Germany.

Video

The Health Benefits of Going Outside

People spend too much time indoors. One solution: ecotherapy.

Video

Where High Tech Meets the 1950s

Why did Green Bank, West Virginia, ban wireless signals? For science.

Video

Yes, Quidditch Is Real

How J.K. Rowling's magical sport spread from Hogwarts to college campuses

Video

Would You Live in a Treehouse?

A treehouse can be an ideal office space, vacation rental, and way of reconnecting with your youth.

More in Technology

Just In