The Controversial Plan for Drawing Clean Power From Old Oil Wells

Bob Hunt, a former nuclear engineer, is testing an innovative system for extracting geothermal energy. Can he tap the heat beneath our feet?


"I initially fell in love with nuclear power," Bob Hunt explained in his Mississippi drawl. "But I became disillusioned with it. Now I'm excited about it again, because we have a nuclear plant in the core of the Earth that's sequestered away, has no pollutants, and that we can tap from anywhere in the world. It's a true renewable energy."

Hunt hopes his new system for extracting geothermal energy out of spent oil and gas wells will catch on, and usher in a new era of clean, homegrown power. Hunt is a physicist, engineer, and inventor who has launched several companies. In 1969, he helped design the atomic systems for the U.S.S. Nimitz, a pioneering nuclear-powered aircraft carrier. Some years later, he left the nuclear industry over fears about its safety. Hunt ended up in aquaculture, and became the first person to successfully spawn redfish, in part because of his invention of a device that pumped pure oxygen into the water.

The Green Report

More recently, Hunt has worked with a number of renewable technologies, including solar building materials (through his company RenewableOne), wind turbines, and a wave-energy generator. He has tried his hand with compressed air-powered vehicles (which remain controversial among many green proponents), and he has promoted his idea for a "gravity plane" that would allegedly fly without fuels, instead taking advantage of the expansion and condensation of a sealed gas. "I don't know if I'll ever build one of those in my lifetime," he told me. "It requires a huge amount of money, far beyond my scope financially."

As far as his geothermal well concept is concerned, Hunt told me he is currently building some test units on oil and gas wells in the Houston area. He expects them to be running by later this year. He hopes to be able to produce about two megawatts of energy per well, roughly equivalent to one commercial wind turbine. "The U.S. only has 3,000 megawatts of geothermal energy installed, so doing 1,500 wells would double that," Hunt said. "This has potential for rapid expansion because you can build these modular units within a factory environment, and we've got thousands of abandoned oil and gas wells."

Hunt's systems currently cost around $1.5 million each (roughly comparable to a wind turbine), he says. At this point, test units are being financed by "Texas oil money." Hunt has also applied for federal funding, which is now available to the tune of hundreds of millions of dollars for geothermal projects (as my coauthor, Jay Egg, and I mention in our recent book Geothermal HVAC).

The Houston Advanced Research Center (HARC) has helped Hunt prepare a grant proposal to the U.S. Department of Energy. HARC's vice president, Jim Lester, calls Hunt's system "a very interesting idea." According to Lester, "There are multiple ways of extracting geothermal energy, and it's an important resource for this country, particularly for Texas, where we poke so many holes in the ground. In fact, there are 600,000 oil and gas wells in the state."

Lester explained that Hunt presented a prototype to his group, and that the team is impressed with the concept. He added that the real test will be whether the system can stand up to the high pressures in the field. "There are interests in the oil and gas industry who are interested in seeing what happens," Lester said.

How Bob Hunt's System Works

In Hunt's system, an existing oil or gas well is "tapped" and connected to his proprietary engine. When turned on, a rushing column of groundwater that escapes from the well drives the engine, which makes power. The water is then re-injected back into the same aquifer.

If a well already has geopressure, meaning water that wants to rush out as soon as you uncork the hole, "you can connect my machine and go," Hunt said. However, if you don't have that benefit, you could try what Hunt calls "gas lift" to create "artificial geopressure." This is done by pouring in liquids that have a lower boiling point than water, such as liquid carbon dioxide, propane, or refrigerants. When the fluid travels 9,000 to 10,000 feet underground, it comes into contact with temperatures around 150 degrees, and it turns into gas. It then displaces higher-density groundwater, making the whole mass lighter than the surrounding rock. As a result of the pressure difference, the groundwater shoots out with tremendous force. It's essentially the same process that makes natural geysers work, except Hunt carefully monitors how much fluid is introduced to keep the well's output constant.

Presented by

Brian Clark Howard is an environmental journalist who has been an editor at The Daily Green and E/The Environmental Magazine. His website is

How to Cook Spaghetti Squash (and Why)

Cooking for yourself is one of the surest ways to eat well. Bestselling author Mark Bittman teaches James Hamblin the recipe that everyone is Googling.

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register.

blog comments powered by Disqus


How to Cook Spaghetti Squash (and Why)

Cooking for yourself is one of the surest ways to eat well.


Before Tinder, a Tree

Looking for your soulmate? Write a letter to the "Bridegroom's Oak" in Germany.


The Health Benefits of Going Outside

People spend too much time indoors. One solution: ecotherapy.


Where High Tech Meets the 1950s

Why did Green Bank, West Virginia, ban wireless signals? For science.


Yes, Quidditch Is Real

How J.K. Rowling's magical sport spread from Hogwarts to college campuses


Would You Live in a Treehouse?

A treehouse can be an ideal office space, vacation rental, and way of reconnecting with your youth.

More in Technology

Just In