How the 'Cellular' Phone Got Its Name

More

If you think about, calling your mobile device a "cellular phone" is very strange.

Until the 1970s, the adjective "cellular" had nothing to do with electronics or human communication, the Oxford English Dictionary tells us. Cellular was mostly (and reasonably) applied to biological phenomenon, things to do with living cells. A 1716 writer could say, "Cutting is dangerous for the Tendons; and if that could be safely attempted, yet the Bones being cellular at the Joint, and porous, it would avail little," for example, or much later, an author in the 1968 New England Journal of Medicine could write, "Once cellular DNA is damaged, the 'message' is irretrievably lost in the medium."

There were other ways you could use the term. One could use cellular to describe some material that had a lot of cavities in it. So, Darwin could say, "I‥had noticed the presence of a few small pebbles of a very cellular basalt." Or you could describe a jail with the word, as a 1931 legal scholar did: "For prisoners on trial, the cellular system should be applied absolutely."

Looking at a portable communication device, it's not immediately apparent why it would come to be called a cellular phone. It's not made of biological cells, nor does it seem to be of, related to, or characterized by any other kind (prison, monastic) of cell.

The answer to this minor mystery is actually all around you. What's cellular about the cell phone is the network. Here's the diagram V.H. MacDonald used in his 1979 article for The Bell System Technical Journal, "The Cellular Concept."

cell-map.jpg

What it depicts is the basic layout of a mobile phone network. It, as you can see, is composed of "cells" - which are defined by the transmission ranges of the towers at their centers vertices.*

The genius of the cellular network is that it allowed much more efficient use of scarce radio spectrum. Carriers can use the same set of frequencies over and over without creating all kinds of interference. In this diagram, A, B, C, D, E, F use different channels, but A1 and A2 as well as D1 and D2 use the same ones. Repeat the pattern over and over and you can use both lower-power towers and much less spectrum to service the same number of customers. As you walk (or drive) around the map, the mobile switching center hands you from one tower's infrastructure to the next one's. Or at least that's what happens when your call doesn't get dropped.

And, yes, this is an idealized diagram, of course. But looking at it, you can see why it might be natural to call these little electromagnetic chambers punctuated with a base tower nucleus a cell.

Going forward, the best way to increase the bandwidth available to mobile phone users is actually to shrink the cell. That requires, of course, a bunch of tiny cell transmitters, and those are actually coming onto the market, Christoper Mims reported in Technology Review.

* This is actually an interesting part of the system, as pointed out by Tim De Chant on Twitter. The towers are not located at the center a circle. The cells are usually hexagons and one tower with a tri-dimensional antenna sits at the vertex of three cells. More on this in subsequent posts.

Jump to comments
Presented by

Alexis C. Madrigal

Alexis Madrigal is the deputy editor of TheAtlantic.com, where he also oversees the Technology Channel. He's the author of Powering the Dream: The History and Promise of Green Technology. More

The New York Observer has called Madrigal "for all intents and purposes, the perfect modern reporter." He co-founded Longshot magazine, a high-speed media experiment that garnered attention from The New York Times, The Wall Street Journal, and the BBC. While at Wired.com, he built Wired Science into one of the most popular blogs in the world. The site was nominated for best magazine blog by the MPA and best science Web site in the 2009 Webby Awards. He also co-founded Haiti ReWired, a groundbreaking community dedicated to the discussion of technology, infrastructure, and the future of Haiti.

He's spoken at Stanford, CalTech, Berkeley, SXSW, E3, and the National Renewable Energy Laboratory, and his writing was anthologized in Best Technology Writing 2010 (Yale University Press).

Madrigal is a visiting scholar at the University of California at Berkeley's Office for the History of Science and Technology. Born in Mexico City, he grew up in the exurbs north of Portland, Oregon, and now lives in Oakland.

Get Today's Top Stories in Your Inbox (preview)

The Remote Warehouse Where Confiscated Wildlife Ends Up

A government facility outside of Denver houses more than a million products of the illegal wildlife trade, from tigers and bears to bald eagles.


Elsewhere on the web

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register. blog comments powered by Disqus

Video

Where the Wild Things Go

A government facility outside of Denver houses more than a million products of the illegal wildlife trade, from tigers and bears to bald eagles.

Video

Adults Need Playtime Too

When was the last time you played your favorite childhood game?

Video

Is Wine Healthy?

James Hamblin prepares to impress his date with knowledge about the health benefits of wine.

Video

The World's Largest Balloon Festival

Nine days, more than 700 balloons, and a whole lot of hot air

Writers

Up
Down

More in Technology

Just In