How I Failed, Failed, and Finally Succeeded at Learning How to Code

Project Euler, named for the Swiss mathematician Leonhard Euler, is popular (more than 150,000 users have submitted 2,630,835 solutions) precisely because Colin Hughes -- and later, a team of eight or nine hand-picked helpers -- crafted problems that lots of people get the itch to solve. And it's an effective teacher because those problems are arranged like the programs in the ORIC-1's manual, in what Hughes calls an "inductive chain":

The problems range in difficulty and for many the experience is inductive chain learning. That is, by solving one problem it will expose you to a new concept that allows you to undertake a previously inaccessible problem. So the determined participant will slowly but surely work his/her way through every problem.

This is an idea that's long been familiar to video game designers, who know that players have the most fun when they're pushed always to the edge of their ability. The trick is to craft a ladder of increasingly difficult levels, each one building on the last. New skills are introduced with an easier version of a challenge -- a quick demonstration that's hard to screw up -- and certified with a harder version, the idea being to only let players move on when they've shown that they're ready. The result is a gradual ratcheting up the learning curve.

Project Euler is engaging in part because it's set up like a video game, with 340 fun, very carefully ordered problems. Each has its own page, like this one that asks you to discover the three most popular squares in a game of Monopoly played with 4-sided (instead of 6-sided) dice. At the bottom of the puzzle description is a box where you can enter your answer, usually just a whole number. The only "rule" is that the program you use to solve the problem should take no more than one minute of computer time to run.

On top of this there is one brilliant feature: once you get the right answer you're given access to a forum where successful solvers share their approaches. It's the ideal time to pick up new ideas -- after you've wrapped your head around a problem enough to solve it.

This is also why a lot of experienced programmers use Project Euler to learn a new language. Each problem's forum is a kind of Rosetta stone. For a single simple problem you might find annotated solutions in Python, C, Assembler, BASIC, Ruby, Java, J and FORTRAN.

Even if you're not a programmer, it's worth solving a Project Euler problem just to see what happens in these forums. What you'll find there is something that educators, technologists and journalists have been talking about for decades. And for nine years it's been quietly thriving on this site. It's the global, distributed classroom, a nurturing community of self-motivated learners -- old, young, from more than two hundred countries -- all sharing in the pleasure of finding things out.

* * *

It's tempting to generalize: If programming is best learned in this playful, bottom-up way, why not everything else? Could there be a Project Euler for English or Biology?

Maybe. But I think it helps to recognize that programming is actually a very unusual activity. Two features in particular stick out.

The first is that it's naturally addictive. Computers are really fast; even in the '80s they were really fast. What that means is there is almost no time between changing your program and seeing the results. That short feedback loop is mentally very powerful. Every few minutes you get a little payoff -- perhaps a small hit of dopamine -- as you hack and tweak, hack and tweak, and see that your program is a little bit better, a little bit closer to what you had in mind.

It's important because learning is all about solving hard problems, and solving hard problems is all about not giving up. So a machine that triggers hours-long bouts of frantic obsessive excitement is a pretty nifty learning tool.

The second feature, by contrast, is something that at first glance looks totally immaterial. It's the simple fact that code is text.

Let's say that your sink is broken, maybe clogged, and you're feeling bold -- instead of calling a plumber you decide to fix it yourself. It would be nice if you could take a picture of your pipes, plug it into Google, and instantly find a page where five or six other people explained in detail how they dealt with the same problem. It would be especially nice if once you found a solution you liked, you could somehow immediately apply it to your sink.

Unfortunately that's not going to happen. You can't just copy and paste a Bob Villa video to fix your garage door.

But the really crazy thing is that this is what programmers do all day, and the reason they can do it is because code is text.

I think that goes a long way toward explaining why so many programmers are self-taught. Sharing solutions to programming problems is easy, perhaps easier than sharing solutions to anything else, because the medium of information exchange -- text -- is the medium of action. Code is its own description. There's no translation involved in making it go.

Programmers take advantage of that fact every day. The Web is teeming with code because code is text and text is cheap, portable and searchable. Copying is encouraged, not frowned upon. The neophyte programmer never has to learn alone.

* * *

Garry Kasparov, a chess grandmaster who was famously bested by IBM's Deep Blue supercomputer, notes how machines have changed the way the game is learned:

There have been many unintended consequences, both positive and negative, of the rapid proliferation of powerful chess software. Kids love computers and take to them naturally, so it's no surprise that the same is true of the combination of chess and computers. With the introduction of super-powerful software it became possible for a youngster to have a top- level opponent at home instead of needing a professional trainer from an early age. Countries with little by way of chess tradition and few available coaches can now produce prodigies.

A student can now download a free program that plays better than any living human. He can use it as a sparring partner, a coach, an encyclopedia of important games and openings, or a highly technical analyst of individual positions. He can become an expert without ever leaving the house.

Take that thought to its logical end. Imagine a future in which the best way to learn how to do something -- how to write prose, how to solve differential equations, how to fly a plane -- is to download software, not unlike today's chess engines, that takes you from zero to sixty by way of a delightfully addictive inductive chain.

If the idea sounds far-fetched, consider that I was taught to program by a program whose programmer, more than twenty-five years earlier, was taught to program by a program.

Image: Creative Commons.

Presented by

James Somers is a writer and programmer based in New York. He works at Genius. His personal site is jsomers.net.

Photos of New York City, in Motion

A filmmaker animated hundreds of still photographs to create this Big Apple flip book