The Search for a Better, Safer Nuclear Power

There's nothing magical about nuclear power. Cloaked in the nearly mystical knowledge granted by Einstein and the other giants of 20th century atomic physics, it sometimes seems as if we tap uranium directly, plugging fissionable material right into our electrical grid without all the steps between the chain reaction and the three-pronged outlet.

energy_bug_1.pngIt's only when something goes horribly wrong, as at Japan's Fukushima nuclear complex that we're reminded of all the specifics that go into nuclear power. Suddenly, the make of the containment vessel and the specific arrangements of the cooling systems leap to the foreground. The core seethes at the center of the operation, but it's all the engineering around it that matter most. The miracle of atomic power shows its human frailty.

A very complex system stands between the between the basic chemistry of fission and the production of electrical power from that radioactive decay. Another way to think about this: not all nuclear power is the same. This is easy to grasp with other technological objects. No one thinks a Volvo is a 1965 VW Bug in terms of performance or safety or cost. But when it comes to nuclear reactors, few proponents or opponents of nuclear power have been willing to admit the extent to which the nuclear power we create doesn't have to be the nuclear power of the past. 


Go to Google Patents and type in, "nuclear reactor." Dozens of patents for different types of nuclear reactors pop up. It feels wrong almost, as if nothing so controversial and powerful could be kept on record like a new design for a pencil sharpener. In the early years of atomic power, as recounted by Alvin Weinberg, head of Oak Ridge National Laboratory in his book The First Nuclear Era, there was intense competition to come up with the cheapest, safest, best nuclear reactor design.

Every variable in building an immensely complex industrial plant was up for grabs: the nature of the radioactive fuel and other substances that form the reactor's core, the safety systems, the containment buildings, the construction substances, and everything else that might go into building an immensely complex industrial plant. The light water reactor became the technological victor, but no one is quite sure whether that was a good idea.

Few of these alternatives were seriously investigated after light water reactors were selected for Navy submarines by Admiral Hyman Rickover. Once light water reactors gained government backing and the many advantages that conferred, other designs could not break into the market, even though commercial nuclear power wouldn't explode for years after Rickover's decision. "There were lots and lots of ideas floating around, and they essentially lost when light water came to dominate," University of Strasbourg professor Robin Cowan told the Boston Globe in an excellent article on "technological lock-in" in the nuclear industry.

As it turned out, there were real political and corporate imperatives to commercialize nuclear power with whatever designs were already to hand. It was geopolitically useful for the United States to show they could offer civilian nuclear facilities to its allies and the companies who built the plants (mainly GE and Westinghouse) did not want to lose the competitive advantage they'd gained as the contractors on the Manhattan Project. Those companies stood to make much more money on nuclear plants than traditional fossil fuel-based plants, and they had less competitors. The invention and use of the atomic bomb weighed heavily on the minds of nuclear scientists. Widespread nuclear power was about the only thing that could redeem their role in the creation of the first weapon with which it was possible to destroy life on earth. In other words, the most powerful interest groups surrounding the nuclear question all wanted to settle on a power plant design and start building.

In this week's excerpt from my book, Powering the Dream: The History and Promise of Green Technology, I look at the story of the Oyster Creek Power Plant, which is the oldest operating nuclear plant in the United States and the same boiling water reactor model designed by General Electric as the Fukushima plant in Japan. It was the first of many plants sold at a discount to utilities by GE and Westinghouse in the 1960s in their efforts to drive the adoption of nuclear power. They received substantial government support in a variety of ways, but especially from the Atomic Energy Commission, which was charged with both regulating and promoting atomic energy. Most importantly, Oyster Creek was used to sell the American public on the idea that the era of cheap nuclear power had arrived, when, in fact, it had not. Even American nuclear scientists were convinced that a cost "breakthrough" had been achieved, though they should have known better.

Presented by

How to Cook Spaghetti Squash (and Why)

Cooking for yourself is one of the surest ways to eat well. Bestselling author Mark Bittman teaches James Hamblin the recipe that everyone is Googling.

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register.

blog comments powered by Disqus


How to Cook Spaghetti Squash (and Why)

Cooking for yourself is one of the surest ways to eat well.


Before Tinder, a Tree

Looking for your soulmate? Write a letter to the "Bridegroom's Oak" in Germany.


The Health Benefits of Going Outside

People spend too much time indoors. One solution: ecotherapy.


Where High Tech Meets the 1950s

Why did Green Bank, West Virginia, ban wireless signals? For science.


Yes, Quidditch Is Real

How J.K. Rowling's magical sport spread from Hogwarts to college campuses


Would You Live in a Treehouse?

A treehouse can be an ideal office space, vacation rental, and way of reconnecting with your youth.

More in Technology

Just In