Why It’s Never Been More Fun to Watch Sports

A discussion with Hank Adams, the CEO of Sportvision, the company that created the glowing hockey puck and football's yellow line
Sportvision

In the old days, football offenses were simple. Hand the ball to a strong, fast guy with stronger guys in front of him, evade tacklers. But the game has evolved. Schemes meet counterschemes, morph, adapt. To watch the Oregon Ducks play football is to realize that sports, like the stock market and smartphones, have become almost too complex to understand. The way games are broadcast has changed, too. What you see on television is no longer a faithful reproduction of the view from the 50-yard line; now cameras hang from blimps, zip over the tops of players’ heads, zoom in on their toes. Slow-motion replay has been written into the rules. We have cyborg referees.

Take the yellow stripe that’s virtually superimposed onto a football field to mark the first-down line. It’s an example of what nerds call augmented reality, in which a digital representation of the physical world is overlaid on live video. It also speaks to a larger phenomenon: the way data-driven technology is changing the way the game is played and viewed. Here, Hank Adams, the CEO of Sportvision, the company that created the yellow line, talks about how fans will experience sports in the future. Hint: you won’t be just watching.

ALEXIS MADRIGAL: How does the yellow line work? I’ve always wondered.

HANK ADAMS: There are a couple of systems that work in concert. Sensors on the cameras tell us where a camera’s looking, and measure how it’s pointed—the pan, tilt, and zoom. We also have a virtual model of what the field should look like. We paint the line there. Then as the camera pans, tilts, and zooms around, we map the three-dimensional world onto the two-dimensional video.

AM: How do you draw the line just on the field, without having it paint over the players’ feet or anything?

HA: Think of the green screen of a weatherman—but next-generation technology. We look for the color of the grass in the place we want to draw the line, and anytime we don’t see it, we presume there to be either some logo on the field or a player’s shoe or pants. When you have Green Bay Packers jerseys, or something that’s very close to the color of the grass, it’s very difficult to distinguish between the players and the field, color-wise.

AM: Why hasn’t ESPN done this itself?

HA: Our company evolved and spun out of News Corp. Back in the day, Fox got the rights to the NHL. Because hockey’s such a fast game, it can be hard to follow the action. And so David Hill, a visionary sports executive, said, “I want some way to actually follow this damn puck.” He pulled together some of the smartest scientists and technical minds that existed across all of News Corp, put them on this project, and lo and behold, they figured out how to make the puck flash with infrared emitters—you wouldn’t see it flashing in person, but the camera could see it. The glowing puck was the first example of augmented reality, to my knowledge, that had ever been seen by people.

When that came out, ratings went up 40 percent. Letterman was doing skits on it, Labatt beer commercials were spoofing it—the glowing puck was everywhere. Fox said, “This is great, but we can’t afford to keep up this traveling circus”—a truckload of equipment for every game, with very expensive engineers. So our company was born.

AM: Then you had the big hit with the first-down line. Did any of your early experiments fail?

HA: We measured the distance of home-run balls—that was an expensive technology that proved not all that insightful. It actually doesn’t really matter how far the ball goes. We measured how high basketball players jump, thinking this would illustrate their athleticism—until we discovered that on average they’re jumping about 12 inches. Turns out they only jump as high as they really need to.

“I can provide precise data on how a car is cornering or whether it clipped a wall. We can tell you things that you can’t see.”

The next success was the K-Zone for baseball, which allowed you to see whether pitches were in the strike zone. Around that time, we were also asked to do NASCAR racing and track cars. That’s when the lightbulb went off. We realized, wait a sec, we’re capturing a digital record that’s fundamentally different than a video record: We have a three-dimensional, real-time computer model of what’s happening on the NASCAR track. A video of a race shows maybe a handful of cars at any given time. But there are 43 cars on the track, covering 2.5 miles, so what you see on TV is the minority of what’s going on at the track. Because we’re tracking every car all the time, I can provide precise data on how a car is cornering or whether it clipped a wall. We can tell you things that you can’t see.That’s where digital records start to get interesting. Ultimately, I think, we’re creating the next generation of sports entertainment. I can let you hit the pitch with a motion-sensing game console like the Xbox Kinect [which users control via gestures and spoken commands], because I can replicate exactly how the ball moved.

Presented by

Never Tell People How Old They Look

Age discrimination affects us all. Who cares about youth? James Hamblin turns to his colleague Jeffrey Goldberg for advice.

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register.

blog comments powered by Disqus

Video

Never Tell People How Old They Look

Age discrimination affects us all. James Hamblin turns to a colleague for advice.

Video

Would You Live in a Treehouse?

A treehouse can be an ideal office space, vacation rental, and way of reconnecting with your youth.

Video

Pittsburgh: 'Better Than You Thought'

How Steel City became a bikeable, walkable paradise

Video

A Four-Dimensional Tour of Boston

In this groundbreaking video, time moves at multiple speeds within a single frame.

Video

Who Made Pop Music So Repetitive? You Did.

If pop music is too homogenous, that's because listeners want it that way.

More in Technology

More back issues, Sept 1995 to present.

Just In