How to Build a Digital Brain

Palm founder Jeff Hawkins on neurology, big data, and the future of artificial intelligence

AM: So how does this relate to your previous work on the brain?

JH: First of all, we have a very complex brain; it’s got all these different components. But we’re just talking neocortex here. Every mammal, from a human to a mouse to a dolphin, has one. What is the neocortex doing? It’s building a model of the world, of what we call sensory motor contingencies or sensory motor patterns: Why are you wearing glasses and what does that mean? Or: If I turn my head to the right, I have expectations about what I’m going to see. Most of what we learn about the world is how it behaves when we interact with it. The neocortex builds a model of what should happen in a particular context. A bigger neocortex lets you make a more complex model, and it lets you have more sensors. And that’s what intelligence is: it’s learning this model of the world.

AM: And Grok uses a similar principle?

JH: Here’s what we do inside Grok: we build this 60,000-neuron neural network that emulates a very small part of one layer of the neocortex. It’s about a thousandth the size of a mouse brain and a millionth the size of a human brain. So: not super-intelligent, but we’re using the principle by which the brain does all the inference and motor behavior. I’m very confident that this sequence memory we use is the core of how all intelligence works. The brain’s taking in streaming data, they’re noisy, they’re constantly changing, and it has to figure out what the patterns are and make predictions from them.

AM: Is this different from other artificial-intelligence research that’s going on these days?

JH: I’ve been observing the AI and AI-neural-network fields for years, and I’ve always been a bit of a contrarian. My view has been: let’s figure out how the neocortex works, and once we understand those principles, that will be the path of building machine intelligence. Classic AI says: forget the neuroscience; it’s a matter of programming and algorithms.

AM: I have to ask, why would you want to build super-intelligent machines?

JH: We can make the world more efficient, we can save energy, we can save resources, we can help detect diseases. When I ask myself, What’s the purpose of life?, I think a lot of it is figuring out how the world works. These machines will help us do that. Many, many years from now, we’ll be able to build machines that are super-physicists and super-mathematicians, and explore the universe. The idea that we could accelerate our accretion of knowledge is very exciting.

AM: But what are all the people going to do once there are all these super-intelligent machines?

JH: Take these models we’re building with Grok. No human is going to be displaced by these things. No one is doing this—it’s impossible. Take the telephone system, where electronic switching replaced all those operators. If we had to have an operator place every telephone call in the world, there would be a billion telephone operators. Did we lose a billion jobs? Not really. We lost a few jobs, and advanced the quality of life. It’s not some dystopian future where machines do everything and we sit around in lounge chairs.

AM: Actually, that sounds pretty good to me.


Read an extended interview at theatlantic.com/thefuture.

Jump to comments
Presented by

Alexis C. Madrigal

Alexis Madrigal is the deputy editor of TheAtlantic.com. He's the author of Powering the Dream: The History and Promise of Green Technology. More

The New York Observer has called Madrigal "for all intents and purposes, the perfect modern reporter." He co-founded Longshot magazine, a high-speed media experiment that garnered attention from The New York Times, The Wall Street Journal, and the BBC. While at Wired.com, he built Wired Science into one of the most popular blogs in the world. The site was nominated for best magazine blog by the MPA and best science website in the 2009 Webby Awards. He also co-founded Haiti ReWired, a groundbreaking community dedicated to the discussion of technology, infrastructure, and the future of Haiti.

He's spoken at Stanford, CalTech, Berkeley, SXSW, E3, and the National Renewable Energy Laboratory, and his writing was anthologized in Best Technology Writing 2010 (Yale University Press).

Madrigal is a visiting scholar at the University of California at Berkeley's Office for the History of Science and Technology. Born in Mexico City, he grew up in the exurbs north of Portland, Oregon, and now lives in Oakland.

Get Today's Top Stories in Your Inbox (preview)

CrossFit Versus Yoga: Choose a Side

How a workout becomes a social identity


Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register. blog comments powered by Disqus

Video

CrossFit Versus Yoga: Choose a Side

How a workout becomes a social identity

Video

Is Technology Making Us Better Storytellers?

The minds behind House of Cards and The Moth weigh in.

Video

A Short Film That Skewers Hollywood

A studio executive concocts an animated blockbuster. Who cares about the story?

Video

In Online Dating, Everyone's a Little Bit Racist

The co-founder of OKCupid shares findings from his analysis of millions of users' data.

Video

What Is a Sandwich?

We're overthinking sandwiches, so you don't have to.

Video

Let's Talk About Not Smoking

Why does smoking maintain its allure? James Hamblin seeks the wisdom of a cool person.

Writers

Up
Down

More in Technology

More back issues, Sept 1995 to present.

Just In