What If We Never Run Out of Oil?

New technology and a little-known energy source suggest that fossil fuels may not be finite. This would be a miracle—and a nightmare.

Sweeping claims like these make Jean Laherrère’s teeth hurt. Laherrère spent 37 years exploring for oil and gas for the French petroleum company Total before co-founding the Association for the Study of Peak Oil and Gas. ASPO was born after Laherrère and Colin Campbell, another retired petroleum geologist, predicted in 1998 that “within the next decade, the supply of conventional oil will be unable to keep up with demand.” Given the record-high petroleum reserves of the time, the claim was gutsy. Campbell and Laherrère insisted that talk of ever more oil was nonsense. In the 1980s, the Organization of the Petroleum Exporting Countries, the intergovernmental cartel that controls most crude oil, discussed allocating sales on the basis of member states’ reserves: the bigger a nation’s reserves, the more oil OPEC would let that nation sell. In such a system, countries would have every incentive to overstate their holdings. As Campbell and Laherrère noted, six of the 11 OPEC members abruptly hiked their reserve estimates during these discussions. Incredibly, some nations more than doubled their estimates, without a word of explanation for why they now had so much more oil in the ground. (OPEC eventually decided not to allocate oil in this way.) The supposed glut was a charade, Laherrère told me when we spoke in February. The reserves didn’t exist. “We said the [plateau in oil production]would begin before 2010, and we were correct.”

Far from being infinite, Laherrère said, petroleum supplies are finite by definition. The Earth contains only so many hydrocarbon molecules that can be extracted by human effort. “Once we have used up the easy oil, new types of cheap energy will not appear by magic. We will keep drilling for oil, and it will not be easy to get. Look at the enormously expensive equipment they use now only to keep up production.”

Oil prices soared, as if on cue, after Laherrère and Campbell’s prediction. By 2008, they had hit levels unseen since the Carter administration. “The supply of oil is limited,” President George W. Bush declared that year, echoing his predecessor. “There is a growing consensus that the age of cheap oil is coming to an end,” announced the British government’s Energy Research Centre. “A peak of conventional oil production before 2030 appears likely and there is a significant risk of a peak before 2020.” Bookstore shelves shudder beneath the avalanche of warnings: The Big Flatline: Oil and the No-Growth Economy. Peak Oil and the Second Great Depression (2010–2030). The End of Growth. The Crash Course. Peeking at Peak Oil. (All have come out in the past three years.)

McKelveyans remain undeterred. Morris Adelman is in failing health and could not speak to me, but I reached two of his students, Michael Lynch and Philip K. Verleger. Lynch, the president of the energy-consulting firm SEER, agreed with Laherrère that reserve estimates are sometimes manipulated for financial reasons—Shell’s chairman resigned in 2004, after the company was caught misstating its reserves—but didn’t think it mattered much. “Shell is still pumping oil,” he said. “The peak-oil people always say, ‘Look at this super-technological rig—see how expensive the equipment is now.’ I see it and think, Look at how good we’ve gotten at doing this.” Lynch added, “The airlines have jettisoned their wooden biplanes and now use 747s. That’s not because we’re running out of sky and it’s harder to fly. It’s because the technology is getting better and increasing our reach.”

More important, to Verleger’s way of thinking, the peak-oil battle has become irrelevant. Verleger, a former economic official in the Ford and Carter administrations, is now a visiting fellow at the Peterson Institute for International Economics in Washington, D.C. Since Hubbert’s time, the dispute has focused on “conventional” petroleum, the type found in regular oil wells, most of which is in the Middle East and controlled by OPEC. Production of conventional oil has indeed plateaued, as Hubbertians warned: OPEC’s output has remained roughly flat since 2005. In part, the slowdown reflects the diminishing supply of this kind of oil. Another part is due to the global recession, which has stalled demand. But a third factor is that OPEC’s conventional petroleum is being supplemented—and possibly supplanted—by what the industry calls “unconventional” petroleum, which for the moment mainly means oil and natural gas from fracking. Fracking, Verleger says, is creating “the biggest change in energy in almost 100 years—a revolution.” That revolution, in his view, will have a big winner: the United States.

The argument is simple. The need to import expensive foreign oil has been a political and economic burden on the United States for decades. Today, though, fracking is unleashing torrents of oil in North Dakota and Texas—it may create a second boom in the San Joaquin Valley—and floods of natural gas in Pennsylvania, West Virginia, and Ohio. So bright are the fracking prospects that the U.S. may become, if only briefly, the world’s top petroleum producer. (“Saudi America,” crowed The Wall Street Journal. But the parallel is inexact, because the U.S. is likely to consume most of its bonanza at home, rather than exporting it.) Oil may cost more than in the past, but prices will surely stabilize. No more spikes! Still more important, this nation is fracking so much natural gas that its price today is less than a third of its price in Europe and Asia—a big cost advantage for American industry. As companies switch to cheap natural gas, a Citigroup report argued last year, the U.S. petroleum boom could add as much as 3.3 percent to America’s GDP in the next seven years.

Until about 1970, the United States produced almost enough petroleum for its own needs. Then, just as Hubbert predicted, domestic oil production began to wane. Suddenly the United States was vulnerable. OPEC had launched an oil embargo in 1967, but it had next to no effect, because the U.S. produced so much of its own oil. Six years later, with U.S. imports surging, OPEC launched a second embargo. Oil prices quadrupled—and caused a massive panic, complete with fistfights at gas stations that were broadcast and rebroadcast on local TV news. “Energy independence!” was the new call from Washington. Perhaps the only ideal shared by Nixon, Carter, and Reagan, it became the holy grail of American politics. George W. Bush, flanked by Democrats, signed the Energy Independence and Security Act of 2007; Barack Obama, fighting with Republicans, has repeatedly touted the need to “get America closer to energy independence.”

Largely because of little-noticed research by government agencies and small companies, that goal is within sight, says Leonardo Maugeri, a former director of the petrochemical division of the Italian energy firm Eni. The United States will still import oil, he argued last summer in a report from Harvard’s Kennedy School of Government. But domestic production will increase so much that by 2020, all of this country’s oil needs “theoretically could come entirely from the Western Hemisphere.” Within a decade, in other words, the U.S. could, if it wanted, stop importing oil from the Middle East. In November, the International Energy Agency agreed, though it pushed the date of independence to 2035. The fracking-led oil-and-gas boom, Philip Verleger said in January, will lead to an American “economic Renaissance.” The United States will at last escape the world made by Churchill, at least for a while.

Nations like Japan, China, and India will still be stuck in that world, as will much of Europe and Southeast Asia. Many of these nations do not have shale deposits to frack, the requisite technological base, or, even if they have both the shale and the technology, the entrepreneurial infrastructure to finance such sweeping changes. Nonetheless, they want to be freed from their abrasive reliance on OPEC. The United States and Canada, mindful that the good times will not last forever, are also hunting for new supplies. All have been looking with ever-increasing interest at a still-larger energy source: methane hydrate.

The land sheds organic molecules into the water like a ditchdigger taking a shower. Sewage plants, fertilizer-rich farms, dandruffy swimmers—all make their contribution. Plankton and other minute sea beings flourish where the drift is heaviest, at the continental margins. When these creatures die, as all living things must, their bodies drizzle slowly to the seafloor, creating banks of sediment, marine reliquaries that can be many feet deep. Microorganisms feed upon the remains.

In a process familiar to anyone who has seen bubbles coming to the surface of a pond, the microbes emit methane gas as they eat and grow. This undersea methane bubbles up too, but it quickly encounters the extremely cold water in the pores of the sediment. Under the high pressure of these cold depths, water and methane react to each other: water molecules link into crystalline lattices that trap methane molecules. A cubic foot of these lattices can contain as much as 180 cubic feet of methane gas.

Most methane hydrate, including the deposit Japan is examining in the Nankai Trough, is generated in this way. A few high-quality beds accumulate when regular natural gas, the kind made underground by geologic processes, leaks from the earth into the deep ocean. However methane hydrate is created, though, it looks much like everyday ice or snow. It isn’t: ordinary ice cannot be set on fire. More technically, ice crystals are typically hexagonal, whereas methane-hydrate crystals are clusters of 12- or 14-sided structures that in scientists’ diagrams look vaguely like soccer balls. Methane molecules rattle about inside the balls, unable to escape. The crystals don’t dissolve in the sea like ordinary ice, because water pressure and temperature keep them stable at depths below about 1,000 feet. Scientists on the surface refer to them by many names: methane hydrate, of course, but also methane clathrate, gas hydrate, hydromethane, and methane ice.

Estimates of the global supply of methane hydrate range from the equivalent of 100 times more than America’s current annual energy consumption to 3 million times more. A tiny fraction—1 percent or less—is buried in permafrost around the Arctic Circle, mostly in Alaska, Canada, and Siberia. The rest is beneath the waves, a reservoir so huge that some scientists believe sudden releases of undersea methane eons ago set off abrupt, catastrophic changes in climate. Humankind cannot tap into the bulk of these deep, vast deposits by any known means. But even a small proportion of a very big number is a very big number.

Hydrates were regarded purely as laboratory curiosities until the 1930s, when a Texas petroleum researcher realized that they were clogging natural-gas pipelines in cold weather. Three decades later, exploration in Siberia revealed gelid bands of methane hydrate embedded in the tundra. Meanwhile, oceanographers were observing anomalies in sonar readings of the seafloor. Some areas of the bottom bounced sound waves back more sharply than one would expect from muddy sediment. It was like waving a flashlight in a dark room and being startled by the flash from a mirror. Three geologists suggested in 1971 that these reflective zones were layers of methane hydrate. Not until 1982 did researchers obtain a large chunk of methane hydrate—a three-foot section of a core sample. The gas inside was 99.4 percent methane. That year, the United States established a methane-hydrate research program.

The investigation was a small, belated part of a global push into unconventional petroleum that had been spurred by the oil shocks of the 1970s. For civilians, understanding unconventionals is difficult, not least because of the taxonomic hodgepodge the industry uses to describe them: tar sands, tight oil, heavy oil, shale gas, coal-bed methane, shale oil, oil shale. (Exasperatingly, shale oil is different from oil shale.) All of these different flavors of petroleum are “unconventional” simply because in the past they were too hard to pull from the earth to be worth the bother. Nowadays technology has made many of them accessible.

Presented by

Charles C. Mann, an Atlantic contributing editor, has been writing for the magazine since 1984. His recent books include 1491, based on his March 2002 cover story, and 1493.

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register with Disqus.

Please note that The Atlantic's account system is separate from our commenting system. To log in or register with The Atlantic, use the Sign In button at the top of every page.

blog comments powered by Disqus


Cryotherapy's Dubious Appeal

James Hamblin tries a questionable medical treatment.


Confessions of Moms Around the World

In Europe, mothers get maternity leave, discounted daycare, and flexible working hours.


How Do Trees Know When It's Spring?

The science behind beautiful seasonal blooming

More in Technology

More back issues, Sept 1995 to present.

Just In