Hacking the President’s DNA

The U.S. government is surreptitiously collecting the DNA of world leaders, and is reportedly protecting that of Barack Obama. Decoded, these genetic blueprints could provide compromising information. In the not-too-distant future, they may provide something more as well—the basis for the creation of personalized bioweapons that could take down a president and leave no trace.

How might we protect the president in the years ahead, as biotech continues to advance? Despite the acceleration of readily exploitable biotechnology, the Secret Service is not powerless. Steps can be taken to limit risks. The agency would not reveal what defenses are already in place, but establishing a crack scientific task force within the agency to monitor, forecast, and evaluate new biotechnological risks would be an obvious place to start. Deploying sensing technologies is another possibility. Already, bio-detectors have been built that can sense known pathogens in less than three minutes. These can get better—a lot better—but even so, they might be limited in their effectiveness. Because synbio opens the door to new, finely targeted pathogens, we’d need to detect that which we’ve never seen before. In this, however, the Secret Service has a big advantage over the Centers for Disease Control and Prevention or the World Health Organization: its principal responsibility is the protection of one specific person. Bio-sensing technologies could be developed around the president’s actual genome. We could use his living cells to build an early-warning system with molecular accuracy.

Cultures of live cells taken from the president could also be kept at the ready—the biological equivalent to data backups. The Secret Service reportedly already carries several pints of blood of the president’s type in his motorcade, in case an emergency transfusion becomes necessary. These biological backup systems could be expanded to include “clean DNA”—essentially, verified stem-cell libraries that would allow bone-marrow transplantation or the enhancement of antiviral or antimicrobial capabilities. As so-called tissue-printing technologies improve, the president’s cells could even be turned, one day, into ready-made standby replacement organs.

Yet even if the Secret Service were to implement some or all of these measures, there is no guarantee that the presidential genome could be completely protected. Anyone truly determined to get the president’s DNA would probably succeed, no matter the defenses. And the Secret Service might have to accept that it can’t fully counter all bio-threats, any more than it can guarantee that the president will never catch a cold.

In the hope of mounting the best defense against an attack, one possible solution—not without its drawbacks—is radical transparency: release the president’s DNA and other relevant biological data, either to a select group of security-cleared bioscience researchers or (the far more controversial step) to the public at large. These ideas may seem counterintuitive, but we have come to believe that open-sourcing this problem—and actively engaging the American public in the challenge of protecting its leader—might turn out to be the best defense.

One practical reason is cost. Any in-house protection effort would be exceptionally pricey. Certainly, considering what’s at stake, the country would bear the expense, but is that the best solution? After all, over the past five years, DIY Drones, a nonprofit online community of autonomous aircraft hobbyists (working for free, in their spare time), produced a $300 unmanned aerial vehicle with 90 percent of the functionality of the military’s $35,000 Raven. This kind of price reduction is typical of open-sourced projects.

Moreover, conducting bio-security in-house means attracting and retaining a very high level of talent. This puts the Secret Service in competition with industry—a fiscally untenable position—and with academia, which offers researchers the freedom to tackle a wider range of interesting problems. But by tapping the collective intelligence of the life-sciences community, the agency would enlist the help of the group best prepared to address this problem, at no cost.

Open-sourcing the president’s genetic information to a select group of security-cleared researchers would bring other benefits as well. It would allow the life sciences to follow in the footsteps of the computer sciences, where “red-team exercises,” or “penetration testing,” are extremely common practices. In these exercises, the red team—usually a group of faux-black-hat hackers—attempts to find weaknesses in an organization’s defenses (the blue team). A similar testing environment could be developed for biological war games.

One of the reasons this kind of practice has been so widely instituted in the computer world is that the speed of development far exceeds the ability of any individual security expert, working alone, to keep pace. Because the life sciences are now advancing faster than computing, little short of an internal Manhattan Project–style effort could put the Secret Service ahead of this curve. The FBI has far greater resources at its disposal than the Secret Service; almost 36,000 people work there, for instance, compared with fewer than 7,000 at the Secret Service. Yet Edward You and the FBI reviewed this same problem and concluded that the only way the bureau could keep up with biological threats was by involving the whole of the life-sciences community.

So why go further? Why take the radical step of releasing the president’s genome to the world instead of just to researchers with security clearances? For one thing, as the U.S. State Department’s DNA-gathering mandate makes clear, the surreptitious collection of world leaders’ genetic material has already begun. It would not be surprising if the president’s DNA has already been collected and analyzed by America’s adversaries. Nor is it unthinkable, given our increasingly nasty party politics, that the president’s domestic political opponents are in possession of his DNA. In the November 2008 issue of The New England Journal of Medicine, Robert C. Green and George J. Annas warned of this possibility, writing that by the 2012 election, “advances in genomics will make it more likely that DNA will be collected and analyzed to assess genetic risk information that could be used for or, more likely, against presidential candidates.” It’s also not hard to imagine the rise of a biological analog to the computer-hacking group Anonymous, intent on providing a transparent picture of world leaders’ genomes and medical histories. Sooner or later, even without open-sourcing, a president’s genome will end up in the public eye.

So the question becomes: Is it more dangerous to play defense and hope for the best, or to go on offense and prepare for the worst? Neither choice is terrific, but even beyond the important issues of cost and talent attraction, open-sourcing—as Claire Fraser, the director of the Institute for Genome Sciences at the University of Maryland School of Medicine, points out—“would level the playing field, removing the need for intelligence agencies to plan for every possible worst-case scenario.”

It would also let the White House preempt the media storm that would occur if someone else leaked the president’s genome. In addition, constant scrutiny of the president’s genome would allow us to establish a baseline and track genetic changes over time, producing an exceptional level of early detection of cancers and other metabolic diseases. And if such diseases were found, an open-sourced genome could likewise accelerate the development of personalized therapies.

The largest factor to consider is time. In 2008, some 14,000 people were working in U.S. labs with access to seriously pathogenic materials; we don’t know how many tens of thousands more are doing the same overseas. Outside those labs, the tools and techniques of genetic engineering are accessible to many other people. Back in 2003, a panel of life-sciences experts, convened by the National Academy of Sciences for the CIA’s Strategic Assessments Group, noted that because the processes and techniques needed for the development of advanced bio agents can be used for good or for ill, distinguishing legitimate research from research for the production of bioweapons will soon be extremely difficult. As a result, “most panelists argued that a qualitatively different relationship between the government and life sciences communities might be needed to most effectively grapple with the future BW threat.”

In our view, it’s no longer a question of “might be.” Advances in biotechnology are radically changing the scientific landscape. We are entering a world where imagination is the only brake on biology, where dedicated individuals can create new life from scratch. Today, when a difficult problem is mentioned, a commonly heard refrain is There’s an app for that. Sooner than you might believe, an app will be replaced by an organism when we think about the solutions to many problems. In light of this coming synbio revolution, a wider-ranging relationship between scientists and security organizations—one defined by open exchange, continual collaboration, and crowd-sourced defenses—may prove the only way to protect the president. And, in the process, the rest of us.

Andrew Hessel is a faculty member and a former co-chair of bioinformatics and biotechnology at Singularity University, and a fellow at the Institute for Science, Society, and Policy at the University of Ottawa. Marc Goodman investigates the impact of advancing technologies on global security, advising Interpol and the U.S. government. He is the founder of the Future Crimes Institute and Chair for Policy, Law & Ethics at Silicon Valley's Singularity University. Steven Kotler is a New York Times–best-selling author and an award-winning journalist.
Presented by

How to Cook Spaghetti Squash (and Why)

Cooking for yourself is one of the surest ways to eat well. Bestselling author Mark Bittman teaches James Hamblin the recipe that everyone is Googling.

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register.

blog comments powered by Disqus

Video

How to Cook Spaghetti Squash (and Why)

Cooking for yourself is one of the surest ways to eat well.

Video

Before Tinder, a Tree

Looking for your soulmate? Write a letter to the "Bridegroom's Oak" in Germany.

Video

The Health Benefits of Going Outside

People spend too much time indoors. One solution: ecotherapy.

Video

Where High Tech Meets the 1950s

Why did Green Bank, West Virginia, ban wireless signals? For science.

Video

Yes, Quidditch Is Real

How J.K. Rowling's magical sport spread from Hogwarts to college campuses

Video

Would You Live in a Treehouse?

A treehouse can be an ideal office space, vacation rental, and way of reconnecting with your youth.

More in Politics

More back issues, Sept 1995 to present.

Just In