Making It in America

In the past decade, the flow of goods emerging from U.S. factories has risen by about a third. Factory employment has fallen by roughly the same fraction. The story of Standard Motor Products, a 92-year-old, family-run manufacturer based in Queens, sheds light on both phenomena. It’s a story of hustle, ingenuity, competitive success, and promise for America’s economy. It also illuminates why the jobs crisis will be so difficult to solve.
The Continual Offshoring Calculus

I came to think of Standard Motor Products as an enormous machine that regularly scans every tiny part of every engine in every car on the streets of the United States to answer two closely related questions: What makes sense to manufacture here in the U.S., and what should be made in a low-wage country, like Mexico or China?

Standard’s customers, the big auto-retail stores and wholesalers, see the company more as a distributor than as a manufacturer. They expect Standard to be able to deliver any part in its categories—known as engine management and temperature control—to any place in the U.S. in less than 48 hours. Standard doesn’t sell the big stuff—batteries, engine blocks—but it does sell many of the cables and sensors and electrical components that surround those large things. If you look at your car’s engine, Standard has, in stock, many of the small parts that you can’t identify—for your car and for every other make and model with more than 10,000 vehicles on American roads. Standard’s enormous warehouse in Disputanta, Virginia, has tens of thousands of different sorts of parts ready to ship at any moment.

Standard makes only about half of the parts it stocks; it buys the rest from other manufacturers, most of them in China. The company’s engineers are constantly reviewing the parts they buy, to see whether they could make the parts more cheaply in-house. Not infrequently, Standard finds that by doing so it can control costs, quality, and delivery speed far better, and thus can better serve the superstores.

I sat in on a meeting between two engineers—the tall and talkative John Gasiewski, and the shorter, less outgoing Marty Doelger—who were reviewing a new batch of crankshaft-position sensors, tiny parts that monitor precisely where in its rotation a crankshaft is at any microsecond.

Marty dumps a box of the sensors—each about the size of a thumb drive—on the table. The new sensor that General Motors uses is a no-brainer, he says: of course Standard should make it. More than 3.5 million cars on the road are equipped with this family of sensors, and many of those cars are brand-new, which means this business will be huge, peaking many years from now. “We’ll be selling a lot of these in 2018,” John says, smiling.

The sensor is made up of a magnet and coil inside a plastic housing attached to a mounting bracket. Its size can vary considerably without causing any problems in the engine, and for that and other reasons, John says, its manufacture requires nothing like the precision needed for making a fuel injector, so it doesn’t need to be made on the most expensive machinery by the most highly skilled workers. The part’s mounting bracket is even less precise. “Feel it,” Marty says. “It’s rough. They just shear it. There’s no precision at all.” So while Standard will make this part, it will do so at its plant in Reynosa, Mexico.

A few months ago, in a meeting like this one, Standard engineers evaluated a type of ignition coil—the tiny voltage transformer that sits on top of a spark plug and converts the battery’s 12 volts into the 30,000 volts needed to fire a spark. It’s a precision part, since the wires on the coil need to be wrapped just so, and Standard was at the time manufacturing the coil in Greenville. Recently, though, the plant Standard owns in Bialystok, Poland, had been impressing the company’s top engineers, and the production of some of these coils will be moving there. “Poland is also low-cost, and they’ve got some really qualified engineers,” Larry says. “They do good work.”

These meetings can lead the company to move dozens of jobs to another country or, in some cases, to create new jobs in the U.S. When Standard decided to increase its fuel-injector production, it chose to do that in the U.S., and staffed up accordingly (that’s how Maddie got her job). Standard will not drop a line in the U.S. and begin outsourcing it to China for a few pennies in savings. “I need to save a lot to go to China,” says Ed Harris, who is in charge of identifying new manufacturing sources in Asia. “There’s a lot of hassle: shipping costs, time, Chinese companies aren’t as reliable. We need to save at least 40 percent off the U.S. price. I’m not going to China to save 10 percent.” Yet often, the savings are more than enough to offset the hassles and expense of working with Chinese factories. Some parts—especially relatively simple ones that Standard needs in bulk—can cost 80 percent less to make in China.

Nearly every manufacturing company in the U.S. goes through this same process: regularly, carefully studying its products to see if they could be made more cheaply in a lower-wage country. The calculation constantly changes, because the world changes. Sometimes that’s bad news for American industrial workers, other times it’s good news. Workers in China and Poland and Mexico, for example, have become more highly skilled, and their factories are now able to produce more-precise goods than they could a decade ago. But at the same time, the wages of those workers have risen, as have shipping costs. Unrest in northern Mexico or an oil-price spike caused by trouble in the Middle East can encourage manufacturers to keep production lines in the United States. The development of increasingly complex machinery can do the same: because expensive machines are more likely to pay off when they can be counted on to run 24 hours a day, every day, the availability of steady electricity, for instance, is essential.

Yet however chaotic and contradictory these forces can be at any moment, over the years and decades they point in one direction: toward fewer jobs for low-skilled American workers. People who can be replaced by machines or lower-paid workers somewhere else, eventually will be. Unless people like Maddie learn how to do things that computers and overseas workers aren’t able to do, they are likely to lose their jobs one day.

Workers’ Paradise?

Since at least the 1970s, when the farsighted could see the consequences of Japan’s rising manufacturing power, some observers have declared a crisis in American manufacturing, and have called for the federal government to fix it. Some suggestions, such as higher tariffs or fewer free-trade agreements, have been politically attractive but economically unconvincing. (Retreating from global trade might help save some manufacturing jobs in the short term, but at the cost of making the entire country poorer.) Other proposals have been self-serving and unlikely to have much impact, like subsidies and tax cuts for manufacturers (the benefits of which go disproportionately to the owners of factories, not to the workers, who still must compete with legions of ever-cheaper robots). Probably the most popular rallying cry lately has been the demand that China stop interfering with currency markets. Just about every economist would argue that China should stop artificially cheapening its currency, but getting it to do so would not dramatically increase low-skill manufacturing employment in the U.S. Most analyses show that in response to a rising yuan, American manufacturing companies would more likely shift production to other low-wage countries—like Indonesia, Bangladesh, or Mexico—than to U.S. factories.

Is there a crisis in manufacturing in America? Looking just at the dollar value of manufacturing output, the answer seems to be an emphatic no. Domestic manufacturers make and sell more goods than ever before. Their success has been grounded in incredible increases in productivity, which is a positive way of saying that factories produce more with fewer workers.

Productivity, in and of itself, is a remarkably good thing. Only through productivity growth can the average quality of human life improve. Because of higher agricultural productivity, we don’t all have to work in the fields to make enough food to eat. Because of higher industrial productivity, few of us need to work in factories to make the products we use. In theory, productivity growth should help nearly everyone in a society. When one person can grow as much food or make as many car parts as 100 used to, prices should fall, which gives everyone in that society more purchasing power; we all become a little richer. In the economic models, the benefits of productivity growth should not go just to the rich owners of capital. As workers become more productive, they should be able to demand higher salaries.

Throughout much of the 20th century, simultaneous technological improvements in both agriculture and industry happened to create conditions that were favorable for people with less skill. The development of mass production allowed low-skilled farmers to move to the city, get a job in a factory, and produce remarkably high output. Typically, these workers made more money than they ever had on the farm, and eventually, some of their children were able to get enough education to find less-dreary work. In that period of dramatic change, it was the highly skilled craftsperson who was more likely to suffer a permanent loss of wealth. Economists speak of the middle part of the 20th century as the “Great Compression,” the time when the income of the unskilled came closest to the income of the skilled.

The double shock we’re experiencing now—globalization and computer-aided industrial productivity—happens to have the opposite impact: income inequality is growing, as the rewards for being skilled grow and the opportunities for unskilled Americans diminish.

I went to South Carolina, and spent so much time with Maddie, precisely because these issues are so large and so overwhelming. I wanted to see how this shift affected regular people’s lives. I didn’t come away with a handy list of policies that would solve all the problems of unskilled workers, but I did note some principles that seem important to improving their situation.

It’s hard to imagine what set of circumstances would reverse recent trends and bring large numbers of jobs for unskilled laborers back to the U.S. Our efforts might be more fruitfully focused on getting Maddie the education she needs for a better shot at a decent living in the years to come. Subsidized job-training programs tend to be fairly popular among Democrats and Republicans, and certainly benefit some people. But these programs suffer from all the ills in our education system; opportunities go, disproportionately, to those who already have initiative, intelligence, and—not least—family support.

I never heard Maddie blame others for her situation; she talked, often, about the bad choices she made as a teenager and how those have limited her future. I came to realize, though, that Maddie represents a large population: people who, for whatever reason, are not going to be able to leave the workforce long enough to get the skills they need. Luke doesn’t have children, and his parents could afford to support him while he was in school. Those with the right ability and circumstances will, most likely, make the right adjustments, get the right skills, and eventually thrive. But I fear that those who are challenged now will only fall further behind. To solve all the problems that keep people from acquiring skills would require tackling the toughest issues our country faces: a broken educational system, teen pregnancy, drug use, racial discrimination, a fractured political culture.

This may be the worst impact of the disappearance of manufacturing work. In older factories and, before them, on the farm, there were opportunities for almost everybody: the bright and the slow, the sociable and the awkward, the people with children and those without. All came to work unskilled, at first, and then slowly learned things, on the job, that made them more valuable. Especially in the mid-20th century, as manufacturing employment was rocketing toward its zenith, mistakes and disadvantages in childhood and adolescence did not foreclose adult opportunity.

For most of U.S. history, most people had a slow and steady wind at their back, a combination of economic forces that didn’t make life easy but gave many of us little pushes forward that allowed us to earn a bit more every year. Over a lifetime, it all added up to a better sort of life than the one we were born into. That wind seems to be dying for a lot of Americans. What the country will be like without it is not quite clear.

Presented by

Adam Davidson is a co-founder and co-host of NPR’s Planet Money.

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register with Disqus.

Please note that The Atlantic's account system is separate from our commenting system. To log in or register with The Atlantic, use the Sign In button at the top of every page.

blog comments powered by Disqus


A Stop-Motion Tour of New York City

A filmmaker animated hundreds of still photographs to create this Big Apple flip book


The Absurd Psychology of Restaurant Menus

Would people eat healthier if celery was called "cool celery?"


This Japanese Inn Has Been Open for 1,300 Years

It's one of the oldest family businesses in the world.


What Happens Inside a Dying Mind?

Science cannot fully explain near-death experiences.

More in Business

More back issues, Sept 1995 to present.

Just In