Mind vs. Machine

In the race to build computers that can think like humans, the proving ground is the Turing Test—an annual battle between the world’s most advanced artificial-intelligence programs and ordinary people. The objective? To find out whether a computer can act “more human” than a person. In his own quest to beat the machines, the author discovers that the march of technology isn’t just changing how we live, it’s raising new questions about what it means to be human.
The Most Human Human

The Most Human Computer award in 2009 goes to David Levy and his program, Do-Much-More. Levy, who also won in ’97, with Catherine, is an intriguing guy: he was one of the big early figures in the digital-chess scene of the ’70s and ’80s, and was one of the organizers of the Marion Tinsley–Chinook checkers matches that preceded the Kasparov–Deep Blue showdowns in the ’90s. He’s also the author of the recent nonfiction book Love and Sex With Robots, to give you an idea of the sorts of things that are on his mind when he’s not competing for the Loebner Prize.

Levy stands up, to applause, accepts the award from Philip Jackson and Hugh Loebner, and makes a short speech about the importance of AI for a bright future, and the importance of the Loebner Prize for AI. I know what’s next on the agenda, and my stomach knots. I’m certain that Doug’s gotten it; he and the judge were talking Canada 30 seconds into their conversation.

Ridiculous Canadians and their ice hockey, I’m thinking. Then I’m thinking how ridiculous it is that I’m even allowing myself to get this worked up about some silly award. Then I’m thinking how ridiculous it is to fly 5,000 miles just to have a few minutes’ worth of IM conversations. Then I’m thinking how maybe it’ll be great to be the runner-up; I can compete again in 2010, in Los Angeles, with the home-field cultural advantage, and finally prove—

“And the results here show also the identification of the humans,” Jackson announces, “and from the ranking list we can see that ‘Confederate 1,’ which is Brian Christian, was the most human.”

And he hands me the certificate for the Most Human Human award.

I didn’t know how to feel, exactly. It seemed strange to treat the award as meaningless or trivial, but did winning really represent something about me as a person? More than anything, I felt that together, my fellow confederates and I had avenged the mistakes of 2008 in dramatic fashion. That year, the 12 judges decided five times that computer programs were more human than confederates. In three of those instances, the judge was fooled by a program named Elbot, which was the handiwork of a company called Artificial Solutions, one of many new businesses leveraging chatbot technology. One more deception, and Elbot would have tricked 33 percent of that year’s dozen judges—surpassing Turing’s 30 percent mark, and making history. After Elbot’s victory at the Loebner Prize and the publicity that followed, the company seemingly decided to prioritize the Elbot software’s more commercial applications; at any rate, it had not entered the ’09 contest as the returning champion.

In some ways a closer fight would have been more dramatic. Between us, we confederates hadn’t permitted a single vote to go the machines’ way. Whereas 2008 was a nail-biter, 2009 was a rout. We think of science as an unhaltable, indefatigable advance. But in the context of the Turing Test, humans—dynamic as ever—don’t allow for that kind of narrative. We don’t provide the kind of benchmark that sits still.

As for the prospects of AI, some people imagine the future of computing as a kind of heaven. Rallying behind an idea called “The Singularity,” people like Ray Kurzweil (in The Singularity Is Near) and his cohort of believers envision a moment when we make smarter- than-us machines, which make machines smarter than themselves, and so on, and the whole thing accelerates exponentially toward a massive ultra-intelligence that we can barely fathom. Such a time will become, in their view, a kind of a techno-Rapture, in which humans can upload their consciousness onto the Internet and get assumed—if not bodily, than at least mentally—into an eternal, imperishable afterlife in the world of electricity.

Others imagine the future of computing as a kind of hell. Machines black out the sun, level our cities, seal us in hyperbaric chambers, and siphon our body heat forever.

I’m no futurist, but I suppose if anything, I prefer to think of the long-term future of AI as a kind of purgatory: a place where the flawed but good-hearted go to be purified—and tested—and come out better on the other side.

Who would have imagined that the computer’s earliest achievements would be in the domain of logical analysis, a capacity once held to be what made us most different from everything else on the planet? That it could fly a plane and guide a missile before it could ride a bike? That it could create plausible preludes in the style of Bach before it could make plausible small talk? That it could translate before it could paraphrase? That it could spin half-discernible essays on postmodern theory before it could be shown a chair and say, as most toddlers can, “chair”?

As computers have mastered rarefied domains once thought to be uniquely human, they simultaneously have failed to master the ground-floor basics of the human experience—spatial orientation, object recognition, natural language, adaptive goal-setting—and in so doing, have shown us how impressive, computationally and otherwise, such minute-to-minute fundamentals truly are.

We forget how impressive we are. Computers are reminding us.

One of my best friends was a barista in high school. Over the course of a day, she would make countless subtle adjustments to the espresso being made, to account for everything from the freshness of the beans to the temperature of the machine to the barometric pressure’s effect on the steam volume, meanwhile manipulating the machine with an octopus’s dexterity and bantering with all manner of customers on whatever topics came up. Then she went to college and landed her first “real” job: rigidly procedural data entry. She thought longingly back to her barista days—when her job actually made demands of her intelligence.

Perhaps the fetishization of analytical thinking, and the concomitant denigration of the creatural—that is, animal—and bodily aspects of life are two things we’d do well to leave behind. Perhaps at last, in the beginnings of an age of AI, we are starting to center ourselves again, after generations of living slightly to one side—the logical, left-hemisphere side. Add to this that humans’ contempt for “soulless” animals, our unwillingness to think of ourselves as descended from our fellow “beasts,” is now challenged on all fronts: growing secularism and empiricism, growing appreciation for the cognitive and behavioral abilities of organisms other than ourselves, and, not coincidentally, the entrance onto the scene of an entity with considerably less soul than we sense in a common chimpanzee or bonobo—in this way AI may even turn out to be a boon for animal rights.

Indeed, it’s entirely possible that we’ve seen the high-water mark of our left-hemisphere bias. I think the return of a more balanced view of the brain and mind—and of human identity—is a good thing, one that brings with it a changing perspective on the sophistication of various tasks.

It’s my belief that only experiencing and understanding truly disembodied cognition—only seeing the coldness and deadness and disconnectedness of something that really does deal in pure abstraction, divorced from sensory reality—can snap us out of it. Only this can bring us, quite literally, back to our senses.

In a 2006 article about the Turing Test, the Loebner Prize co-founder Robert Epstein writes, “One thing is certain: whereas the confederates in the competition will never get any smarter, the computers will.” I agree with the latter, and couldn’t disagree more strongly with the former.

When the world-champion chess player Garry Kasparov defeated Deep Blue, rather convincingly, in their first encounter in 1996, he and IBM readily agreed to return the next year for a rematch. When Deep Blue beat Kasparov (rather less convincingly) in ’97, Kasparov proposed another rematch for ’98, but IBM would have none of it. The company dismantled Deep Blue, which never played chess again.

The apparent implication is that—because technological evolution seems to occur so much faster than biological evolution (measured in years rather than millennia)—once the Homo sapiens species is overtaken, it won’t be able to catch up. Simply put: the Turing Test, once passed, is passed forever. I don’t buy it.

Rather, IBM’s odd anxiousness to get out of Dodge after the ’97 match suggests a kind of insecurity on its part that I think proves my point. The fact is, the human race got to where it is by being the most adaptive, flexible, innovative, and quick-learning species on the planet. We’re not going to take defeat lying down.

No, I think that, while the first year that computers pass the Turing Test will certainly be a historic one, it will not mark the end of the story. Indeed, the next year’s Turing Test will truly be the one to watch—the one where we humans, knocked to the canvas, must pull ourselves up; the one where we learn how to be better friends, artists, teachers, parents, lovers; the one where we come back. More human than ever.

Presented by

Brian Christian, a science writer and poet, is the author of the new book The Most Human Human: What Talking With Computers Teaches Us About What It Means to Be Alive (Doubleday), from which this article has been adapted.

Never Tell People How Old They Look

Age discrimination affects us all. Who cares about youth? James Hamblin turns to his colleague Jeffrey Goldberg for advice.

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register.

blog comments powered by Disqus

Video

Never Tell People How Old They Look

Age discrimination affects us all. James Hamblin turns to a colleague for advice.

Video

Would You Live in a Treehouse?

A treehouse can be an ideal office space, vacation rental, and way of reconnecting with your youth.

Video

Pittsburgh: 'Better Than You Thought'

How Steel City became a bikeable, walkable paradise

Video

A Four-Dimensional Tour of Boston

In this groundbreaking video, time moves at multiple speeds within a single frame.

Video

Who Made Pop Music So Repetitive? You Did.

If pop music is too homogenous, that's because listeners want it that way.

More in Technology

More back issues, Sept 1995 to present.

Just In