Watch Live: The Washington Ideas Forum 2014
Technology May 2010

Everything Is Illuminated

Inexpensive, handheld Raman scanners will soon enable anyone to identify just about anything.
Paramount/The Kobal Collection

Sergeant Kris Gilbert of the Polk County, Florida, narcotics squad is teaching his officers to use a new device that’s going to make their job a lot easier. It looks like a vintage cell phone and weighs about 13 ounces. Held against a bag of white powder, it emits a beam of laser light that—in 20 seconds—can tell the officers at a crime scene whether the bag contains crack cocaine, methamphetamine, or baby powder. The device is programmed to recognize 100 narcotics. “Once the courts accept this new evidence,” says Gilbert, “it could replace the chemical kits we currently use to test drugs in our labs.”

What has brought this Star Trek wonder scanner to life is Raman spectroscopy: a quick, easy, and non-invasive tool that tells users in seconds what something really is at the molecular level. Recent improvements in technology have shrunk the once expensive, unwieldy tabletop device into an array of smaller, more commercially viable Raman scanners, such as the handheld drug detector by DeltaNu, which costs $15,000 and is being tested by police departments in several states. About 1,000 portable devices that identify hazardous materials are also in use. Within 10 years, DeltaNu expects its handheld devices to be in every police squad car in the country, as ubiquitous as the breathalyzer.

Raman devices work by shooting a laser beam at an object. The laser light interacts with the object’s electrons, making the atoms vibrate and shifting the energy of the laser photons up or down. The shift creates a visual pattern—the Raman effect, named after C. V. Raman, the Indian scientist who discovered it in the 1920s. Almost every material has its own unique Raman pattern, based on how strongly its atoms are bonded.

Raman, who won a Nobel Prize for his discovery, realized that this scattering of light offered an alternative to X-ray diffraction as a means of identifying compounds. But not until the advent of more powerful, less expensive lasers in the 1970s and ’80s and advances in digital imaging in the 1990s, spurred by NASA and the telecommunications industry, did scientists begin researching applications for Raman spectroscopy.

At about the same time, Richard Van Duyne, a chemistry professor at Northwestern University, found that the intensity of the Raman signal was proportional to the electromagnetic field on the surface of an object, and that enhancing the electromagnetic field with gold or silver or copper would boost the Raman signal considerably. In fact, a device using “surface-enhanced Raman spectroscopy” can detect traces of less than one part per billion. As a result, it can be used to identify minute quantities of explosives in liquids or deadly bacteria on a table in a meatpacking plant. Rick Cox, the head of business development at DeltaNu, estimates that while Raman technology is now a $150 million business, within five to 10 years, handheld Raman instruments selling for less than $5,000 will be available to everybody to identify just about anything.

The potential medical applications of Raman technology are perhaps the most exciting. Researchers at Stanford University are experimenting with it as a non-invasive tool to diagnose breast, lung, and other cancers. River Diagnostics, in Rotterdam, is marketing a bacteria-strain analyzer to identify pathogens in real time and combat hospital-acquired infections. Diabetics may someday be able to monitor their glucose without poking themselves to get a drop of blood. Allergy sufferers may be able to instantly detect which pesky pollens are in the air and respond accordingly.

But to identify materials, you need databases of Raman patterns. “We are in the midst of another tremendous era of reclassification—like the scientists of the 18th century,” says Robert Downs, a mineralogist who with his University of Arizona colleague Bonner Denton, a chemist, has spearheaded the development of Raman technology.

Over the past five years, Downs and his team have identified the Raman patterns of about half the Earth’s 4,000 minerals. So far, other scientists have generally been willing to share their knowledge, but Downs is troubled by the prospect of companies’ putting exorbitant user fees on their databases. “The Raman effect is part of the innate quality of matter—like DNA,” he told me. “No one owns the song of a bird.”

Louise Levathes is a writer in Washington, D.C.
Presented by

Things Not to Say to a Pregnant Woman

You don't have to tell her how big she is. You don't need to touch her belly.

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register.

blog comments powered by Disqus

Video

Things Not to Say to a Pregnant Woman

You don't have to tell her how big she is. You don't need to touch her belly.

Video

Maine's Underground Street Art

"Graffiti is the farthest thing from anarchy."

Video

The Joy of Running in a Beautiful Place

A love letter to California's Marin Headlands

Video

'I Didn't Even Know What I Was Going Through'

A 17-year-old describes his struggles with depression.

Video

Google Street View, Transformed Into a Tiny Planet

A 360-degree tour of our world, made entirely from Google's panoramas

Video

The Farmer Who Won't Quit

A filmmaker returns to his hometown to profile the patriarch of a family farm

Video

Riding Unicycles in a Cave

"If you fall down and break your leg, there's no way out."

Video

Carrot: A Pitch-Perfect Satire of Tech

"It's not just a vegetable. It's what a vegetable should be."

More in Technology

More back issues, Sept 1995 to present.

Just In