Gut Reactions

The termite’s stomach, of all things, has become the focus of large-scale scientific investigations. Could the same properties that make the termite such a costly pest help us solve global warming?
More

These concerns speak to an important tension underlying the termite research: the often competing agendas of work aimed at producing quick results, and of the slower, more methodical approach known as basic science, which tries to discover the fundamental logic of natural processes. Again, Julia Child (or maybe the more commercial Wolfgang Puck) versus the librarians. Some of the scientists—and even venture capitalists—I spoke with voiced fears that the race to harness nature for fuel production may cause us to neglect basic science and thus jeopardize potential long-term gains.

Consider this: half of the 80,000 genes inventoried from the Costa Rican termites remain unidentified, and each of those 40,000, Warnecke imagines, could require a Ph.D. thesis to figure out. Hugenholtz says that metagenomics is grappling with the problem of having too much information and too few references. “Sequencing is far outstripping our ability to characterize the genes,” he explains, adding that this can lead to “genome rot”—a chain of errors created when one scientist gets a gene wrong, and then the mistake is multiplied across other genomes. The popular model of science is based on “eureka” moments, but right now, metagenomics is more like a big 3-D puzzle, where every new piece of knowledge—and every mistake—affects the whole. Trying to solve just one part of the puzzle for a quick commercial breakthrough may be as tricky as solving the entire thing.

It could also cause us to give short shrift to alternative solutions. Eric Mathur was one of the Diversa executives who helped set up the Costa Rican expedition; he now works for Synthetic Genomics, a company founded by the scientific impresario Craig Venter to search for biology-based fuels and methods to cut greenhouse-gas emissions. Mathur says the Nature paper is just the beginning of a long process of understanding how symbiotic creatures deal with wood and carbon. He thinks that searching for individual enzymes in the termite will be a dead end, but that harnessing the power of whole environments might yield results. The challenge, he says, is to learn how these environments’ overall metabolisms work, and then use the tools of synthetic biology to engineer the organisms in them to evolve—creating a “slave organism” that focuses all of its resources, down to its last electron, on processing carbon. “Metabolic engineering is a very powerful method for productivity,” he told me.

But the strongest argument for more basic research may be the termite itself. Jared Leadbetter, an associate professor of environmental microbiology at Caltech, remembers feeling “like an ecotourist in Alice in Wonderland” the first time he looked at a magnified termite gut, 18 years ago. Leadbetter has pioneered the study of the metabolism of a few of the spiro­chetes in the gut. Like Mathur, he believes scientists might put the termite’s gut to work against global warming by using it to understand and possibly alter the carbon cycle—the biogeochemical give-and-take of greenhouse gases between the Earth and its atmosphere.

Leadbetter says one of the extraordinary things about termites is not how much ethanol they might make, but how little methane they produce. Cows lose 20 percent of the energy in the grass they eat, because the microbes in their stomachs combine hydrogen and carbon dioxide from the grass to make methane, a greenhouse gas that traps 20 times as much heat in the atmosphere as CO2. In 2006, the greenhouse gases produced by U.S. farm animals exceeded the emissions of the iron, steel, and cement industries combined. Termites lose less than 2 percent of their nutrients to methane production, because the spirochetes in their guts transform hydrogen and carbon dioxide into acetate, which the termites use as fuel. If we understood this process, perhaps we could put new microorganisms into the stomachs of cows and reduce their production of methane.

We’re a long way from changing the chemistry of cows’ stomachs, but the process of adapting and commercializing the termite’s role in the carbon cycle has already yielded success on a small scale. The Virginia-based company ArcTech trained termites to eat coal, and then rummaged through their guts to find the microorganisms best at turning coal into methane. It cultured those microorganisms and now feeds them coal; the company plans to use the methane they produce to make electricity, and is already selling the by-products, including one used by farmers as a soil additive. ArcTech says this method eliminates virtually all greenhouse-gas emissions from coal-based electricity production. Other companies are trying to engineer similar organisms that could be sent into abandoned mines and oil wells to scavenge fuel that goes unused because it is so hard to get at. Such efforts could have a dramatic effect on both the environment and geopolitics: experts estimate that increasing the yield of oil wells from the current average of 35 percent of the oil in a reservoir to 40 percent would be the equivalent of discovering a new Saudi Arabia.

Who knows what other answers may lurk in the termite? Elizabeth Ottesen, a graduate student doing research in Leadbetter’s lab, dissected a termite and put it under a microscope to give me a tour of its gut. At first glance, the dark mass of the gut was immobile, the organisms apparently packed too tightly to move, but as Ottesen added water, a menagerie of blobby Trichonympha, whizzing spirochetes, and other creatures materialized, all supported by gangs of bacteria too small to see. The inhabitants here are arranged in hierarchies more elaborate than Manhattan real estate, she said: Those at the edges use oxygen, while those in the middle are anaerobes. Many are high-speed commuters, outfitted with complicated sensing and swimming apparatus that helps them find hydrogen and other gases. Among the creatures in the termite’s gut, and especially among those creatures’ genes, exist redundancies that suggest the system has been over­engineered to survive the worst (including being force-fed coal). A spirochete’s flagella, for example, are between the layers of a double skin, enabling the organism to drill through the most viscous environments.

Leadbetter expects it will take at least 25 years to unravel what he calls the “teleological questions” about the termite’s complexity. Along the way, the termite will likely provide clues to solving climate change, but Leadbetter thinks its greatest value may be as a repository of biological wisdom gathered over the course of more than 100 million years of survival on Earth. “When you look at a termite and its gut,” he says, “you’re looking at a long line of winners.”

Lisa Margonelli is an Irvine Fellow at the New America Foundation and the author of Oil on the Brain: Petroleum’s Long, Strange Trip to Your Tank (2007).
Jump to comments
Presented by

Lisa Margonelli is a writer on energy and environment. She spent four years and traveled 100,000 miles to write her book, "Oil On the Brain: Petroleum's Long Strange Trip to Your Tank." More

Lisa Margonelli directs the New America Foundation's Energy Productivity Initiative, which works to promote energy efficiency as a way of ensuring energy security, greenhouse gas emissions reductions, and economic security for American families. She spent roughly four years and traveled 100,000 miles to report her book about the oil supply chain, Oil On the Brain: Petroleum's Long Strange Trip to Your Tank, which the American Library Association named one of the 25 Notable Books of 2007. She spent her childhood in Maine where, during the energy crisis of the 1970s, her family heated the house with wood hauled by a horse. Later, fortunately, they got a tractor. The experience instilled a strong appreciation for the convenience of fossil fuels.

Get Today's Top Stories in Your Inbox (preview)

Saving Central: One High School's Struggle After Resegregation

Meet the students and staff at Tuscaloosa’s all-black Central High School in a short documentary film by Maisie Crow. 


Elsewhere on the web

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register. blog comments powered by Disqus

Video

Where Time Comes From

The clocks that coordinate your cellphone, GPS, and more

Video

Computer Vision Syndrome and You

Save your eyes. Take breaks.

Video

What Happens in 60 Seconds

Quantifying human activity around the world

Writers

Up
Down

More in Technology

More back issues, Sept 1995 to present.

Just In