Gut Reactions

The termite’s stomach, of all things, has become the focus of large-scale scientific investigations. Could the same properties that make the termite such a costly pest help us solve global warming?

History suggests that science follows its own timetable, often producing results long after the politicians who approved the funding have left office. Yet curiosity without the prospect of imminent practical application is something biotech investors are increasingly loath to pay for. When the Nature study began, Diversa was on the cutting edge of “ethical bioprospecting”—searching the world for novel environments and enzymes. After merging with a biofuels company, it became Verenium last year, and shifted to the more prosaic task of making commercial enzymes involved in the development of products including animal feed, paper, and fuels.

David Weiner, the assistant director of enzyme technology at Verenium, gave me a tour of the labs, showing me what he calls the “giant funnel”—the process the company uses to sift through nature’s intellectual property for enzymes that can be converted to profits. “We’re not really interested in DNA,” he said, meaning that the focus is on an enzyme’s performance, not its origins.

Whereas the Joint Genome Institute began by sequencing the termite-gut DNA—learning about its underlying structure—and only then tried to identify what might be useful, Weiner’s colleagues threw all the material from the Costa Rican expedition directly into testing, using the funnel approach to separate the most-useful enzymes from the millions of useless ones. Researchers inserted gene fragments into lab bacteria that had been genetically “tamed” to produce whatever enzyme the fragments were programmed to make. They then tested those enzymes on cellulose, to see if they would attack it. Only the winners made it to sequencing. You might think of the Joint Genome Institute as a group of diligent librarians, studying every step along the way. In contrast, a Verenium senior researcher told me, the company takes a “Julia Child approach”—once it has thrown together the ingredients (like termite guts and cellulose), it turns its attention to the final product, with far less focus on the stages in between.

Much of the action takes place in a machine—a type of robot, really—called the GigaMatrix. Clad in steel, the Giga­Matrix looks like a copier from the late 1980s, with two flat TV monitors on top and a door on the side. It can screen up to a million enzymes at a go, easily exceeding in a single day the lifetime performance of a human lab tech. The Giga­Matrix and other machines took the 500 or so most interesting enzymes from the termite gut and narrowed them down to fewer than 100 with potentially practical applications. Those were then tested for their effects on cellulose, modified, and inserted into “factory” bacteria trained to produce large quantities of enzymes while dining on cheap food, such as corn syrup. As the enzymes made their way through the process, every parameter of their growth and efficacy was measured. Only a small percentage proved powerful enough to merit continued investigation; these were stirred into multiple-enzyme “cocktails” to evaluate their speed and efficiency in combination. By the end, Weiner said, just a few enzymes remained in the running for further testing.

Geoff Hazlewood, a former senior vice president and now a consultant to Verenium, told me that the company has currently put aside studying termites for biofuels and has moved on to other potentially lucrative efforts. “You could screen ad nauseam,” he said, “but you can’t commit an infinite amount of resources.” Whatever the termites are doing may be too complicated and fragile to be useful in a large industrial process. There may be genius in the termite gut—Weiner calls it, admiringly, “a whole town”—but the wonders of symbiosis, in themselves, mean little to companies focused on the bottom line. “We want faster, cheaper, more efficient,” Weiner told me.

Presented by

Lisa Margonelli is an Irvine Fellow at the New America Foundation and the author of Oil on the Brain: Petroleum’s Long, Strange Trip to Your Tank (2007). More

Lisa Margonelli directs the New America Foundation's Energy Productivity Initiative, which works to promote energy efficiency as a way of ensuring energy security, greenhouse gas emissions reductions, and economic security for American families. She spent roughly four years and traveled 100,000 miles to report her book about the oil supply chain, Oil On the Brain: Petroleum's Long Strange Trip to Your Tank, which the American Library Association named one of the 25 Notable Books of 2007. She spent her childhood in Maine where, during the energy crisis of the 1970s, her family heated the house with wood hauled by a horse. Later, fortunately, they got a tractor. The experience instilled a strong appreciation for the convenience of fossil fuels.

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register with Disqus.

Please note that The Atlantic's account system is separate from our commenting system. To log in or register with The Atlantic, use the Sign In button at the top of every page.

blog comments powered by Disqus


A Stop-Motion Tour of New York City

A filmmaker animated hundreds of still photographs to create this Big Apple flip book


The Absurd Psychology of Restaurant Menus

Would people eat healthier if celery was called "cool celery?"


This Japanese Inn Has Been Open For 1,300 Years

It's one of the oldest family businesses in the world.


What Happens Inside a Dying Mind?

Science cannot fully explain near-death experiences.

More in Technology

More back issues, Sept 1995 to present.

Just In