The Sky Is Falling

The odds that a potentially devastating space rock will hit Earth this century may be as high as one in 10. So why isn’t NASA trying harder to prevent catastrophe?
More

 

Also see:



Video: "Target Earth"

Gregg Easterbrook leads an illustrated tour through the treacherous world of space rocks.

Breakthrough ideas have a way of seeming obvious in retro­spect, and about a decade ago, a Columbia University geophysicist named Dallas Abbott had a breakthrough idea. She had been pondering the craters left by comets and asteroids that smashed into Earth. Geologists had counted them and concluded that space strikes are rare events and had occurred mainly during the era of primordial mists. But, Abbott realized, this deduction was based on the number of craters found on land—and because 70 percent of Earth’s surface is water, wouldn’t most space objects hit the sea? So she began searching for underwater craters caused by impacts rather than by other forces, such as volcanoes. What she has found is spine-chilling: evidence that several enormous asteroids or comets have slammed into our planet quite recently, in geologic terms. If Abbott is right, then you may be here today, reading this magazine, only because by sheer chance those objects struck the ocean rather than land.

Abbott believes that a space object about 300 meters in diameter hit the Gulf of Carpentaria, north of Australia, in 536 A.D. An object that size, striking at up to 50,000 miles per hour, could release as much energy as 1,000 nuclear bombs. Debris, dust, and gases thrown into the atmosphere by the impact would have blocked sunlight, temporarily cooling the planet—and indeed, contemporaneous accounts describe dim skies, cold summers, and poor harvests in 536 and 537. “A most dread portent took place,” the Byzantine historian Procopius wrote of 536; the sun “gave forth its light without brightness.” Frost reportedly covered China in the summertime. Still, the harm was mitigated by the ocean impact. When a space object strikes land, it kicks up more dust and debris, increasing the global-cooling effect; at the same time, the combination of shock waves and extreme heating at the point of impact generates nitric and nitrous acids, producing rain as corrosive as battery acid. If the Gulf of Carpentaria object were to strike Miami today, most of the city would be leveled, and the atmospheric effects could trigger crop failures around the world.

What’s more, the Gulf of Carpentaria object was a skipping stone compared with an object that Abbott thinks whammed into the Indian Ocean near Madagascar some 4,800 years ago, or about 2,800 B.C. Researchers generally assume that a space object a kilometer or more across would cause significant global harm: widespread destruction, severe acid rain, and dust storms that would darken the world’s skies for decades. The object that hit the Indian Ocean was three to five kilometers across, Abbott believes, and caused a tsunami in the Pacific 600 feet high—many times higher than the 2004 tsunami that struck Southeast Asia. Ancient texts such as Genesis and the Epic of Gilgamesh support her conjecture, describing an unspeakable planetary flood in roughly the same time period. If the Indian Ocean object were to hit the sea now, many of the world’s coastal cities could be flattened. If it were to hit land, much of a continent would be leveled; years of winter and mass starvation would ensue.

At the start of her research, which has sparked much debate among specialists, Abbott reasoned that if colossal asteroids or comets strike the sea with about the same frequency as they strike land, then given the number of known land craters, perhaps 100 large impact craters might lie beneath the oceans. In less than a decade of searching, she and a few colleagues have already found what appear to be 14 large underwater impact sites. That they’ve found so many so rapidly is hardly reassuring.

Other scientists are making equally unsettling discoveries. Only in the past few decades have astronomers begun to search the nearby skies for objects such as asteroids and comets (for convenience, let’s call them “space rocks”). What they are finding suggests that near-Earth space rocks are more numerous than was once thought, and that their orbits may not be as stable as has been assumed. There is also reason to think that space rocks may not even need to reach Earth’s surface to cause cataclysmic damage. Our solar system appears to be a far more dangerous place than was previously believed.

The received wisdom about the origins of the solar system goes something like this: the sun and planets formed about 4.5 billion years ago from a swirling nebula containing huge amounts of gas and dust, as well as relatively small amounts of metals and other dense substances released by ancient supernova explosions. The sun is at the center; the denser planets, including Earth, formed in the middle region, along with many asteroids—the small rocky bodies made of material that failed to incorporate into a planet. Farther out are the gas-giant planets, such as Jupiter, plus vast amounts of light elements, which formed comets on the boundary of the solar system. Early on, asteroids existed by the millions; the planets and their satellites were bombarded by constant, furious strikes. The heat and shock waves generated by these impacts regularly sterilized the young Earth. Only after the rain of space objects ceased could life begin; by then, most asteroids had already either hit something or found stable orbits that do not lead toward planets or moons. Asteroids still exist, but most were assumed to be in the asteroid belt, which lies between Mars and Jupiter, far from our blue world.

As for comets, conventional wisdom held that they also bombarded the planets during the early eons. Comets are mostly frozen water mixed with dirt. An ancient deluge of comets may have helped create our oceans; lots of comets hit the moon, too, but there the light elements they were composed of evaporated. As with asteroids, most comets were thought to have smashed into something long ago; and, because the solar system is largely void, researchers deemed it statistically improbable that those remaining would cross the paths of planets.

These standard assumptions—that remaining space rocks are few, and that encounters with planets were mainly confined to the past—are being upended. On March 18, 2004, for instance, a 30-meter asteroid designated 2004 FH—a hunk potentially large enough to obliterate a city—shot past Earth, not far above the orbit occupied by telecommunications satellites. (Enter “2004 FH” in the search box at Wikipedia and you can watch film of that asteroid passing through the night sky.) Looking at the broader picture, in 1992 the astronomers David Jewitt, of the University of Hawaii, and Jane Luu, of the Massachusetts Institute of Technology, discovered the Kuiper Belt, a region of asteroids and comets that starts near the orbit of Neptune and extends for immense distances outward. At least 1,000 objects big enough to be seen from Earth have already been located there. These objects are 100 kilometers across or larger, much bigger than whatever dispatched the dinosaurs; space rocks this size are referred to as “planet killers” because their impact would likely end life on Earth. Investigation of the Kuiper Belt has just begun, but there appear to be substantially more asteroids in this region than in the asteroid belt, which may need a new name.

Beyond the Kuiper Belt may lie the hypothesized Oort Cloud, thought to contain as many as trillions of comets. If the Oort Cloud does exist, the number of extant comets is far greater than was once believed. Some astronomers now think that short-period comets, which swing past the sun frequently, hail from the relatively nearby Kuiper Belt, whereas comets whose return periods are longer originate in the Oort Cloud.

But if large numbers of comets and asteroids are still around, several billion years after the formation of the solar system, wouldn’t they by now be in stable orbits—ones that rarely intersect those of the planets? Maybe not. During the past few decades, some astronomers have theorized that the movement of the solar system within the Milky Way varies the gravitational stresses to which the sun, and everything that revolves around it, is exposed. The solar system may periodically pass close to stars or groups of stars whose gravitational pull affects the Oort Cloud, shaking comets and asteroids loose from their orbital moorings and sending them downward, toward the inner planets.

Consider objects that are already near Earth, and the picture gets even bleaker. Astronomers traditionally spent little time looking for asteroids, regarding them as a lesser class of celestial bodies, lacking the beauty of comets or the significance of planets and stars. Plus, asteroids are hard to spot—they move rapidly, compared with the rest of the heavens, and even the nearby ones are fainter than other objects in space. Not until the 1980s did scientists begin systematically searching for asteroids near Earth. They have been finding them in disconcerting abundance.

In 1980, only 86 near-Earth asteroids and comets were known to exist. By 1990, the figure had risen to 170; by 2000, it was 921; as of this writing, it is 5,388. The Jet Propulsion Laboratory, part of NASA, keeps a running tally at www.neo.jpl.nasa.gov/stats. Ten years ago, 244 near-Earth space rocks one kilometer across or more—the size that would cause global calamity—were known to exist; now 741 are. Of the recently discovered nearby space objects, NASA has classified 186 as “impact risks” (details about these rocks are at www.neo.jpl.nasa.gov/risk). And because most space-rock searches to date have been low-budget affairs, conducted with equipment designed to look deep into the heavens, not at nearby space, the actual number of impact risks is undoubtedly much higher. Extrapolating from recent discoveries, NASA estimates that there are perhaps 20,000 potentially hazardous asteroids and comets in the general vicinity of Earth.

There’s still more bad news. Earth has experienced several mass extinctions—the dinosaurs died about 65 million years ago, and something killed off some 96 percent of the world’s marine species about 250 million years ago. Scientists have generally assumed that whatever caused those long-ago mass extinctions—comet impacts, extreme volcanic activity—arose from conditions that have changed and no longer pose much threat. It’s a comforting notion—but what about the mass extinction that occurred close to our era?

About 12,000 years ago, many large animals of North America started disappearing—woolly mammoths, saber-toothed cats, mastodons, and others. Some scientists have speculated that Paleo-Indians may have hunted some of the creatures to extinction. A millennia-long mini–Ice Age also may have been a factor. But if that’s the case, what explains the disappearance of the Clovis People, the best-documented Paleo-Indian culture, at about the same time? Their population stretched as far south as Mexico, so the mini–Ice Age probably was not solely responsible for their extinction.

A team of researchers led by Richard Firestone, of the Lawrence Berkeley National Laboratory, in California, recently announced the discovery of evidence that one or two huge space rocks, each perhaps several kilometers across, exploded high above Canada 12,900 years ago. The detonation, they believe, caused widespread fires and dust clouds, and disrupted climate patterns so severely that it triggered a prolonged period of global cooling. Mammoths and other species might have been killed either by the impact itself or by starvation after their food supply was disrupted. These conclusions, though hotly disputed by other researchers, were based on extensive examinations of soil samples from across the continent; in strata from that era, scientists found widely distributed soot and also magnetic grains of iridium, an element that is rare on Earth but common in space. Iridium is the meteor-hunter’s lodestar: the discovery of iridium dating back 65 million years is what started the geologist Walter Alvarez on his path-breaking theory about the dinosaurs’ demise.

A more recent event gives further cause for concern. As buffs of the television show The X Files will recall, just a century ago, in 1908, a huge explosion occurred above Tunguska, Siberia. The cause was not a malfunctioning alien star-cruiser but a small asteroid or comet that detonated as it approached the ground. The blast had hundreds of times the force of the Hiroshima bomb and devastated an area of several hundred square miles. Had the explosion occurred above London or Paris, the city would no longer exist. Mark Boslough, a researcher at the Sandia National Laboratory, in New Mexico, recently concluded that the Tunguska object was surprisingly small, perhaps only 30 meters across. Right now, astronomers are nervously tracking 99942 Apophis, an asteroid with a slight chance of striking Earth in April 2036. Apophis is also small by asteroid standards, perhaps 300 meters across, but it could hit with about 60,000 times the force of the Hiroshima bomb—enough to destroy an area the size of France. In other words, small asteroids may be more dangerous than we used to think—and may do considerable damage even if they don’t reach Earth’s surface.

Jump to comments
Presented by

Gregg Easterbrook is a contributing editor of The Atlantic. He is the author of The Leading Indicators and The King of Sports: Football’s Impact on America.

Get Today's Top Stories in Your Inbox (preview)

What Is the Greatest Story Ever Told?

A panel of storytellers share their favorite tales, from the Bible to Charlotte's Web.


Elsewhere on the web

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register. blog comments powered by Disqus

Video

The Death of Film

You'll never hear the whirring sound of a projector again.

Video

How to Hunt With Poison Darts

A Borneo hunter explains one of his tribe's oldest customs: the art of the blowpipe

Video

A Delightful, Pixar-Inspired Cartoon

An action figure and his reluctant sidekick trek across a kitchen in search of treasure.

Video

I Am an Undocumented Immigrant

"I look like a typical young American."

Video

Why Did I Study Physics?

Using hand-drawn cartoons to explain an academic passion

Writers

Up
Down

More in Technology

More back issues, Sept 1995 to present.

Just In