State of the Union January/February 2007

The God of Small Things

Mapping the human genome wasn’t enough. Now Craig Venter is trying to create a microbe that will free us from our addiction to oil.

But then the human genome beckoned. In 1998, the biotech firm Perkin-Elmer persuaded Venter to head a new company that would use a technique called “whole-genome shotgunning” to try to speed up the genome-mapping process. At that point the government’s Human Genome Project, using a slower, more painstaking method, was seven years away from its projected date of completion. The new company, eventually called Celera, vowed to finish the work in three years. The pledge, and the race that followed, made Venter world-famous. It also cemented the reputation for egomania that he had developed at SUNY Buffalo, at NIH, and among his partners at Human Genome Sciences (with whom he feuded and eventually parted ways), and it added a multitude of government scientists and officials to an already-substantial list of enemies.

The Human Genome Project’s custodians would probably have resented any private-sector rival, but Venter made himself easy to loathe. In May of 1998, when he met with HGP scientists to outline his company’s plans, he suggested that while his team polished off the human genome, they might consider turning their attention to another creature. Specifically, the mouse. (After that meeting, Watson, who had left the project in 1992, gave the HGP scientists his view of Venter. “He’s Hitler,” Watson said. “This should not be Munich.”)

Venter’s rivals in the government predicted that his method would deliver a patchy, error-ridden product, and warned that if he succeeded in sequencing the genome first, Celera could enjoy a dangerous monopoly over information that rightly belonged in the public domain. They were wrong on both counts, in part because the Human Genome Project, spurred on by the competition, finished at about the same time as Celera. A tie was announced in June of 2000; shortly thereafter Celera’s stock collapsed, and Venter was forced to resign as president.

He had money, though, from stock in various companies, and he had freedom: “Having sequenced the human genome,” he says with a laugh, “gives you a few options.” Using $100 million of his own funds, he started three not-for-profit research centers, which are now consolidated under the J. Craig Venter Institute. The institute is based in the same Rockville headquarters as TIGR—a miniature campus, with three low buildings roofed in Spanish tile, interspersed with ponds and greenery, and a taller building whose exterior panels are colored red and green, blue and yellow, to represent the four nucleotides (adenine, cytosine, guanine, and thymine) that bind together the DNA double helix and make up the code of life. One of the new centers, the Institute for Biological Energy Alternatives, took up the challenge of creating the minimal genome. Because a minimal genome has no nonessential pathways, it is the ideal template for the creation of designer organisms. By inserting “cassettes” of carefully engineered genes into a stripped-down genome, Venter hoped to construct organisms that would do exactly what he wanted, and nothing else—organisms, for instance, that could serve as “biofactories,” carrying out energy-generating functions that had been written into their genetic code.

In 2003 the IBEA team, led by Hamilton “Ham” Smith, Venter’s longtime research colleague and the winner of a 1978 Nobel Prize in Medicine, took just fourteen days to reconstruct the 5,386 nucleotide base pairs of a virus called phi-X174, which attacks certain bacteria. A virus is far short of a bacterium, the real goal, which would have hundreds of thousands of base pairs. (Viruses have no metabolic processes of their own, and scientists debate whether they even count as living organisms.) But this achievement prompted Venter to step back into the for-profit world, and in the summer of 2005 he founded Synthetic Genomics, a company that would build on the minimal-genome research. Meanwhile, he was making his ocean-sifting trip on the Sorcerer II. The first third of the material from the voyage (the rest is still being sequenced) has yielded 6 million genes. Somewhere in this wealth of material, perhaps, are the keys to better living through ethanol—the genes that, inserted into a minimal genome, could produce an organism able to break down cellulose quickly and cheaply.

Or at least that’s one possibility. Aristides Patrinos, Synthetic Genomics’ president (Venter is the CEO), calls the cheap, efficient creation of cellulosic ethanol “the holy grail,” and he should know, having been in the alternative-energy field since the 1970s. Hiring Patrinos was a coup for Venter and a sign that Synthetic Genomics intended to be a major player. Patrinos had been one of the government’s point men for alternative energy, while serving as the associate director for biological and environmental research at the Department of Energy from 1995 until last year; he was responsible for getting references to alternative energy into the 2006 State of the Union address, and he succeeded in boosting federal funding for biofuel even as belts were tightening elsewhere in Washington. A wiry, mustachioed man who seems in danger of being swallowed by his clothes, Patrinos has been friends with Venter since the early 1990s, and he supplied the IBEA with government funding in the early ’00s, before Venter lured him into the private sector.

Synthetic Genomics is still getting off the ground: when I visited Patrinos, in October, the movers were bringing furniture to its Rockville offices, two parking lots over from Venter’s main campus, and half the space was empty, awaiting new hires. The company has quietly approached a number of energy companies for funding. It is using the capital raised so far to support minimal-genome research at the Venter Institute, and it has laboratories in La Jolla, California, where most of its scientists will be based.

Meanwhile, through the institute, Venter has teamed up with the University of California, San Diego, and Iowa State University to compete for $500 million in funding from BP, which has pledged to establish a biofuel research laboratory at an American or British university. Venter and the two universities have also joined forces to compete for one of the $125 million grants that the U.S. Department of Energy will award to each of two winning proposals for bioenergy research centers.

Such labs are the places where the rubber will meet the road—or, to quote Energy Secretary Samuel Bodman, where “the right microbe” will meet “the right biomass source.” Bodman is an enthusiast: he envisions making cellulosic ethanol cost-competitive with gasoline by 2012, and he said in a recent speech that the research centers have “the potential to be the best thing we do during my tenure as energy secretary.”

The word potential is, of course, key. You can turn cellulosic biomass into ethanol in the lab, but nobody’s done it on an industrial scale, and with today’s technology, cellulosic ethanol can cost twice as much to make as its corn-based cousin. So everyone is looking for greater efficiency. Iogen, a Canadian corporation that’s currently building one of the first “biorefineries” for cellulosic ethanol, is working on using genetically modified yeast to make fermentation more efficient. Dyadic, a Florida-based biotech company, has been modifying fungi found in the Russian Far East and hopes to produce commercial quantities of an enzyme that breaks down cellulose. Ceres, a California plant-genetics company, is trying to create ideal “energy crops,” plants that are hardier and more drought-resistant than your average weed and can be broken down quickly.

All of these avenues, though, are fairly complex. Synthetic Genomics’ vision, Patrinos has said, is of the simplest process imaginable: engineered microbes that could transform the crops-to-biofuel process into a one-step stew.

When I spoke with Venter, as an early-autumn rain churned up the ponds on his campus, he was already looking beyond ethanol. It may well be that a gene from the ocean, or elsewhere, will enable a synthetic organism to break down cellulose quickly and cheaply—but that’s only the first step to real independence from oil.

“Ethanol’s not an ideal fuel,” Venter pointed out. In the long run, you want fuels that burn hotter and that don’t require long-distance transportation, vast tracts of land, and huge biorefineries. Fuels, perhaps, that you could make at home. (“Everybody would have their own little bath in their backyard and fuel their car from it.”) Natural gas from sewage sludge. (“Pretty bad-smelling stuff coming out of septic tanks. If you could convert it into something useful and burn it … methane is natural gas, you know?”) And hydrogen, the cleanest fuel of all, from sunlight. (“We’re working on modifying photosynthesis to go directly from sunlight into hydrogen production.”)

All of this is speculative, of course. “Sometime in the future,” Venter says, “I am a hundred percent certain scientists will sit down at a computer terminal, design what they want the organism to do, and build it.” When is “sometime in the future”? He doesn’t say, but he is willing to venture that we should expect biological research to spark large-scale changes in the energy scene within the next ten years. The prediction comes with a touch of disarmingly frank self-centeredness: “Ham is in his mid-seventies. I’m turning sixty. We don’t want something with a fifty-year timeline. We’re egocentric, we want to see it take place, so we’re determined to have it take place in the next decade.”

And maybe it will. But research needs steady support, and investors tend to move in cycles. The 1970s saw great enthusiasm for “synfuels,” or synthetic substitutes for oil and natural gas; however, the enthusiasm and the funding dried up in the ’80s, once gas prices plunged back to earth from their oil-crisis high. Similarly, this past fall, as the cost of gasoline dropped, the stock market’s excitement about ethanol firms diminished as well. Consequently, Venter believes, the government needs to make a steady commitment to alternative energy. But not with props like the 51-cents-a-gallon ethanol subsidy. The government should be funding research rather than actual products, he argues, so as not to create “a false industry that collapses once the subsidies collapse.” And not with the sort of large-scale, Manhattan Project–style effort that many pundits have called for. If you put everyone into a laboratory in New Mexico or Nevada and tell them to come up with a solution, Venter says, it will just be the Human Genome Project all over again: a slow-motion process waiting for the kind of private-sector kick in the pants that he provided. Instead, Venter wants to see the government fund a variety of competing companies and research projects. “I’d rather see a thousand points of light than one dull bureaucracy,” he says. “We don’t have to have a single industrial-complex solution to this problem.”

A thousand points of light. A thousand Craig Venters. It’s a very American image, and for a man with a reputation for an outsized ego, it has a surprising humility about it—the Venter idealism breaking through the Venter arrogance. “I’m hoping our research teams come up with the breakthroughs,” he says, “but I think as a society, we need those breakthroughs, and there’s no guarantee we’ll make them. So … I’d be almost as happy if somebody else makes those breakthroughs.”


Presented by

Ross Douthat is an Atlantic associate editor and the author of Privilege: Harvard and the Education of the Ruling Class (2005).

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register with Disqus.

Please note that The Atlantic's account system is separate from our commenting system. To log in or register with The Atlantic, use the Sign In button at the top of every page.

blog comments powered by Disqus


A Stop-Motion Tour of New York City

A filmmaker animated hundreds of still photographs to create this Big Apple flip book


The Absurd Psychology of Restaurant Menus

Would people eat healthier if celery was called "cool celery?"


This Japanese Inn Has Been Open for 1,300 Years

It's one of the oldest family businesses in the world.


What Happens Inside a Dying Mind?

Science cannot fully explain near-death experiences.

More in Technology

More back issues, Sept 1995 to present.

Just In