Will Frankenfood Save the Planet?

Over the next half century genetic engineering could feed humanity and solve a raft of environmental ills—if only environmentalists would let it

That genetic engineering may be the most environmentally beneficial technology to have emerged in decades, or possibly centuries, is not immediately obvious. Certainly, at least, it is not obvious to the many U.S. and foreign environmental groups that regard biotechnology as a bête noire. Nor is it necessarily obvious to people who grew up in cities, and who have only an inkling of what happens on a modern farm. Being agriculturally illiterate myself, I set out to look at what may be, if the planet is fortunate, the farming of the future.

It was baking hot that April day. I traveled with two Virginia state soil-and-water-conservation officers and an agricultural-extension agent to an area not far from Richmond. The farmers there are national (and therefore world) leaders in the application of what is known as continuous no-till farming. In plain English, they don't plough. For thousands of years, since the dawn of the agricultural revolution, farmers have ploughed, often several times a year; and with ploughing has come runoff that pollutes rivers and blights aquatic habitat, erosion that wears away the land, and the release into the atmosphere of greenhouse gases stored in the soil. Today, at last, farmers are working out methods that have begun to make ploughing obsolete.

At about one-thirty we arrived at a 200-acre patch of farmland known as the Good Luck Tract. No one seemed to know the provenance of the name, but the best guess was that somebody had said something like "You intend to farm this? Good luck!" The land was rolling, rather than flat, and its slopes came together to form natural troughs for rainwater. Ordinarily this highly erodible land would be suitable for cows, not crops. Yet it was dense with wheat—wheat yielding almost twice what could normally be expected, and in soil that had grown richer in organic matter, and thus more nourishing to crops, even as the land was farmed. Perhaps most striking was the almost complete absence of any chemical or soil runoff. Even the beating administered in 1999 by Hurricane Floyd, which lashed the ground with nineteen inches of rain in less than twenty-four hours, produced no significant runoff or erosion. The land simply absorbed the sheets of water before they could course downhill.

At another site, a few miles away, I saw why. On land planted in corn whose shoots had only just broken the surface, Paul Davis, the extension agent, wedged a shovel into the ground and dislodged about eight inches of topsoil. Then he reached down and picked up a clump. Ploughed soil, having been stirred up and turned over again and again, becomes lifeless and homogeneous, but the clump that Davis held out was alive. I immediately noticed three squirming earthworms, one grub, and quantities of tiny white insects that looked very busy. As if in greeting, a worm defecated. "Plant-available food!" a delighted Davis exclaimed.

This soil, like that of the Good Luck Tract, had not been ploughed for years, allowing the underground ecosystem to return. Insects and roots and microorganisms had given the soil an elaborate architecture, which held the earth in place and made it a sponge for water. That was why erosion and runoff had been reduced to practically nil. Crops thrived because worms were doing the ploughing. Crop residue that was left on the ground, rather than ploughed under as usual, provided nourishment for the soil's biota and, as it decayed, enriched the soil. The farmer saved the fuel he would have used driving back and forth with a heavy plough. That saved money, and of course it also saved energy and reduced pollution. On top of all that, crop yields were better than with conventional methods.

The conservation people in Virginia were full of excitement over no-till farming. Their job was to clean up the James and York Rivers and the rest of the Chesapeake Bay watershed. Most of the sediment that clogs and clouds the rivers, and most of the fertilizer runoff that causes the algae blooms that kill fish, comes from farmland. By all but eliminating agricultural erosion and runoff—so Brian Noyes, the local conservation-district manager, told me—continuous no-till could "revolutionize" the area's water quality.

Even granting that Noyes is an enthusiast, from an environmental point of view no-till farming looks like a dramatic advance. The rub—if it is a rub—is that the widespread elimination of the plough depends on genetically modified crops.

It is only a modest exaggeration to say that as goes agriculture, so goes the planet. Of all the human activities that shape the environment, agriculture is the single most important, and it is well ahead of whatever comes second. Today about 38 percent of the earth's land area is cropland or pasture—a total that has crept upward over the past few decades as global population has grown. The increase has been gradual, only about 0.3 percent a year; but that still translates into an additional Greece or Nicaragua cultivated or grazed every year.

Farming does not go easy on the earth, and never has. To farm is to make war upon millions of plants (weeds, so-called) and animals (pests, so-called) that in the ordinary course of things would crowd out or eat or infest whatever it is a farmer is growing. Crop monocultures, as whole fields of only wheat or corn or any other single plant are called, make poor habitat and are vulnerable to disease and disaster. Although fertilizer runs off and pollutes water, farming without fertilizer will deplete and eventually exhaust the soil. Pesticides can harm the health of human beings and kill desirable or harmless bugs along with pests. Irrigation leaves behind trace elements that can accumulate and poison the soil. And on and on.

From the archives:

"The Next American Dust Bowl ... and How to Avert It" (July 1979)
Serious large-scale farmers are giving organic methods a try, with startling success. By William Tucker

The trade-offs are fundamental. Organic farming, for example, uses no artificial fertilizer, but it does use a lot of manure, which can pollute water and contaminate food. Traditional farmers may use less herbicide, but they also do more ploughing, with all the ensuing environmental complications. Low-input agriculture uses fewer chemicals but more land. The point is not that farming is an environmental crime—it is not—but that there is no escaping the pressure it puts on the planet.

Presented by

Jonathan Rauch is a correspondent for The Atlantic and a senior writer for National Journal. He is also a writer in residence at the Brookings Institution and the author of several books, including Government's End: Why Washington Stopped Working (1999).

How to Cook Spaghetti Squash (and Why)

Cooking for yourself is one of the surest ways to eat well. Bestselling author Mark Bittman teaches James Hamblin the recipe that everyone is Googling.

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register.

blog comments powered by Disqus


How to Cook Spaghetti Squash (and Why)

Cooking for yourself is one of the surest ways to eat well.


Before Tinder, a Tree

Looking for your soulmate? Write a letter to the "Bridegroom's Oak" in Germany.


The Health Benefits of Going Outside

People spend too much time indoors. One solution: ecotherapy.


Where High Tech Meets the 1950s

Why did Green Bank, West Virginia, ban wireless signals? For science.


Yes, Quidditch Is Real

How J.K. Rowling's magical sport spread from Hogwarts to college campuses


Would You Live in a Treehouse?

A treehouse can be an ideal office space, vacation rental, and way of reconnecting with your youth.

More in Technology

More back issues, Sept 1995 to present.

Just In