Seeing Around Corners

The new science of artificial societies suggests that real ones are both more predictable and more surprising than we thought. Growing long-vanished civilizations and modern-day genocides on computers will probably never enable us to foresee the future in detail—but we might learn to anticipate the kinds of events that lie ahead, and where to look for interventions that might work

In about A.D. 1300 the Anasazi people abandoned Long House Valley. To this day the valley, though beautiful in its way, seems touched by desolation. It runs eight miles more or less north to south, on the Navajo reservation in northern Arizona, just west of the broad Black Mesa and half an hour's drive south of Monument Valley. To the west Long House Valley is bounded by gently sloping domes of pink sandstone; to the east are low cliffs of yellow-white sedimentary rock crowned with a mist of windblown juniper. The valley floor is riverless and almost perfectly flat, a sea of blue-gray sagebrush and greasewood in sandy reddish soil carried in by wind and water. Today the valley is home to a modest Navajo farm, a few head of cattle, several electrical transmission towers, and not much else.

Web-only Sidebars:

Artificial Society Animations
Watch QuickTime animations of the artificial societies discussed in this article.

Interviews: "The World on a Screen" (March 29, 2002)
Jonathan Rauch talks about what the study of artificial societies has to tell us about the real world.

Yet it is not hard to imagine the vibrant farming district that this once was. The Anasazi used to cultivate the valley floor and build their settlements on low hills around the valley's perimeter. Remains of their settlements are easy to see, even today. Because the soil is sandy and the wind blows hard, not much stays buried, so if you leave the highway and walk along the edge of the valley (which, by the way, you can't do without a Navajo permit), you frequently happen upon shards of Anasazi pottery, which was eggshell-perfect and luminously painted. On the site of the valley's eponymous Long House—the largest of the ancient settlements—several ancient stone walls remain standing.

Last year I visited the valley with two University of Arizona archaeologists, George Gumerman and Jeffrey Dean, who between them have studied the area for fifty or more years. Every time I picked up a pottery shard, they dated it at a glance. By now they and other archaeologists know a great deal about the Anasazi of Long House Valley: approximately how many lived here, where their dwellings were, how much water was available to them for farming, and even (though here more guesswork is involved) approximately how much corn each acre of farmland produced. They have built up a whole prehistoric account of the people and their land. But they still do not know what everyone would most like to know, which is what happened to the Anasazi around A.D. 1300.

"Really, we've been sort of spinning our wheels in the last eight to ten years," Gumerman told me during the drive up to the valley. "Even though we were getting more data, we haven't been able to answer that question." Recently, however, they tried something new. Unable to interrogate or observe the real Long House Valley Anasazi, they set about growing artificial ones.

Mr. Schelling's Neighborhood

Growing artificial societies on computers—in silico, so to speak—requires quite a lot of computing power and, still more important, some sophisticated modern programming languages, so the ability to do it is of recent vintage. Moreover, artificial societies do not belong to any one academic discipline, and their roots are, accordingly, difficult to trace. Clearly, however, one pioneer is Thomas C. Schelling, an economist who created a simple artificial neighborhood a generation ago.

Today Schelling is eighty years old. He looks younger than his age and is still active as an academic economist, currently at the University of Maryland. He and his wife, Alice, live in a light-filled house in Bethesda, Maryland, where I went to see him one day not long ago. Schelling is of medium height and slender, with a full head of iron-gray hair, big clear-framed eyeglasses, and a mild, soft-spoken manner. Unlike most other economists I've dealt with, Schelling customarily thinks about everyday questions of collective organization and disorganization, such as lunchroom seating and traffic jams. He tends to notice the ways in which complicated social patterns can emerge even when individual people are following very simple rules, and how those patterns can suddenly shift or even reverse as though of their own accord. Years ago, when he taught in a second-floor classroom at Harvard, he noticed that both of the building's two narrow stairwells—one at the front of the building, the other at the rear—were jammed during breaks with students laboriously jostling past one another in both directions. As an experiment, one day he asked his 10:00 A.M. class to begin taking the front stairway up and the back one down. "It took about three days," Schelling told me, "before the nine o'clock class learned you should always come up the front stairs and the eleven o'clock class always came down the back stairs"—without, so far as Schelling knew, any explicit instruction from the ten o'clock class. "I think they just forced the accommodation by changing the traffic pattern," Schelling said.

In the 1960s he grew interested in segregated neighborhoods. It was easy in America, he noticed, to find neighborhoods that were mostly or entirely black or white, and correspondingly difficult to find neighborhoods where neither race made up more than, say, three fourths of the total. "The distribution," he wrote in 1971, "is so U-shaped that it is virtually a choice of two extremes." That might, of course, have been a result of widespread racism, but Schelling suspected otherwise. "I had an intuition," he told me, "that you could get a lot more segregation than would be expected if you put people together and just let them interact."

Presented by

Jonathan Rauch is a contributing editor of The Atlantic and National Journal and a senior fellow at the Brookings Institution.

Saving the Bees

Honeybees contribute more than $15 billion to the U.S. economy. A short documentary considers how desperate beekeepers are trying to keep their hives alive.

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register.

blog comments powered by Disqus


How to Cook Spaghetti Squash (and Why)

Cooking for yourself is one of the surest ways to eat well.


Before Tinder, a Tree

Looking for your soulmate? Write a letter to the "Bridegroom's Oak" in Germany.


The Health Benefits of Going Outside

People spend too much time indoors. One solution: ecotherapy.


Where High Tech Meets the 1950s

Why did Green Bank, West Virginia, ban wireless signals? For science.


Yes, Quidditch Is Real

How J.K. Rowling's magical sport spread from Hogwarts to college campuses


Would You Live in a Treehouse?

A treehouse can be an ideal office space, vacation rental, and way of reconnecting with your youth.

More in Entertainment

More back issues, Sept 1995 to present.

Just In