No Middle Way on the Environment

The authors, environmental scientists, warn that in the debate between "cornucopians" and informed prophets of the dangers posed by overconsumption, splitting the difference won't work -- and that the cornucopians are wrong.
LAYPEOPLE frequently assume that in a political dispute the truth must lie somewhere in the middle, and they are often right. In a scientific dispute, though, such an assumption is usually wrong. Copernicus, in De Revolutionibus Orbium Coelestium (1543), showed (to the distress of the establishment) that the earth both rotated on its axis and, along with the other planets, revolved around the sun. The controversy about what revolved where was not resolved by a compromise that had the earth stationary on its axis but circling the sun. Pasteur put an end to the debate over whether some organisms could be produced by "spontaneous generation" by showing that bacteria descended from other bacteria. The answer wasn't a compromise in which mice couldn't be spontaneously generated whereas flies and microbes could.

There has long been a dispute between "cornucopians" and scientists over whether too much consumption in rich countries poses a serious threat to the global environment. In his recent article regarding the state of our planet, "Do We Consume Too Much?" (June Atlantic), Mark Sagoff fell headlong into the truth-in-the-middle trap by asserting that "neither side has it right." He has done a disservice to the public by promoting once again the dangerous idea that technological fixes will solve the human predicament. 

But the debate goes well beyond Sagoff. In challenging his views, we are also challenging a whole current of opinion based on a sophistic application of a political model (in which split-the-difference outcomes are the rule) to the environment. 

Sagoff argues that concern over the depletion of natural resources and the impact of their current levels of use is misplaced, and that technological innovation will remedy any problems that do arise. This view certainly is not shared by the scientific community. For example, the 1992 "World Scientists' Warning to Humanity" (signed by more than 1,500 leading scientists, including more than half of all living Nobel laureates in the sciences) stated that "human beings and the natural world are on a collision course" and that people in developed nations "must greatly reduce their overconsumption, if we are to reduce pressures on resources and the global environment." A 1993 statement on world population issued by fifty-eight scientific academies dealt with consumption in a similar vein. The academies, which include the U.S. National Academy, the British Royal Society, the French, German, Swedish, Russian, and Indian Academies, and the Third World Academy, represent the global scientific community. They concluded,
If all people of the world consumed fossil fuels and other natural resources at the rate now characteristic of developed countries (and with current technologies), this would greatly intensify our already unsustainable demands on the biosphere.... As scientists cognizant of the history of scientific progress and aware of the potential of science for contributing to human welfare, it is our collective judgment that continuing population growth poses a great risk to humanity. Furthermore, it is not prudent to rely on science and technology alone to solve problems created by rapid population growth, wasteful resource consumption, and poverty.

Thus the very people who would produce the technological fixes in which Sagoff places such faith do not share his complacency. 

Sagoff's thesis rests on a series of basic misconceptions.

Misconception No. 1:
Overconsumption is only 
a moral issue

IT is simply wrong to believe that nature sets physical limits to economic growth." Or, as Sagoff put it at another point, "The idea that increasing consumption will inevitably lead to depletion and scarcity, as plausible as it may seem, is mistaken both in principle and in fact."

This statement, Sagoff's core message, misses the point. Since natural resources are finite, increasing consumption obviously 

must "inevitably lead to depletion and scarcity." Currently there are very large supplies of many mineral resources, including iron and coal. But when they become "depleted" or "scarce" will depend not simply on how much is in the ground but also on the rate at which they can be produced and the amount societies can afford to pay, in standard economic or environmental terms, for their extraction and use. 

For most resources, economic and environmental constraints will limit consumption while substantial quantities remain. Long before coal disappears, coal production will probably be limited by the lack of atmospheric capacity to absorb safely more carbon dioxide, the greenhouse gas of which coal burning is an especially prolific source. For others, however, global "depletion" -- that is, decline to a point where worldwide demand can no longer be met economically -- is already on the horizon. Petroleum is a textbook example of such a resource. Ironically, Sagoff cites it as a resource that is increasing in abundance, asserting,
Raw materials -- including energy resources -- are generally more abundant and less expensive today than they were twenty years ago. [In the 1970s] economically recoverable world reserves of petroleum stood at 640 billion barrels. Since that time reserves have increasedby more than 50 percent, reaching more than 1,000 billion barrels in 1989.
These impressive figures are, unfortunately, figments of the bureaucratic imagination. In an unpublished report Amos Nur, an earth scientist at Stanford University, wrote,
In 1987 ... there was a sudden boost of reported crude-oil reserves. It turns out that all of this came from Middle Eastern governments: Iraq, Iran, and a few other countries increased their proven reserves by 250 percent overnight! It was not improved technology or new discoveries that led to this; the governments of those countries simply recalculated the volume of recoverable oil in the fields. So 'proven reserves' are completely unreliable.

What is reliable in this business is actual production -- and in that regard the United States is well over the peak, and the world as a whole is at the peak right now. Steps can and should be taken to stretch oil supplies; conservation and improved secondary recovery (extracting oil that remains after standard pumping operations) are the most promising. But conservation is often politically difficult to sell (especially when prices are kept low), and secondary recovery is expensive and can require large amounts of water, another resource in short supply. In China water is already being forcibly withheld from farmers along the Yellow River in order to flush residual oil from the wells of the Shingle Oil Field Company. But, as Nur emphasizes, even though the last drops of petroleum will never be extracted from the earth, "the supply of oil is truly finite."

Presented by

How to Cook Spaghetti Squash (and Why)

Cooking for yourself is one of the surest ways to eat well. Bestselling author Mark Bittman teaches James Hamblin the recipe that everyone is Googling.

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register.

blog comments powered by Disqus


How to Cook Spaghetti Squash (and Why)

Cooking for yourself is one of the surest ways to eat well.


Before Tinder, a Tree

Looking for your soulmate? Write a letter to the "Bridegroom's Oak" in Germany.


The Health Benefits of Going Outside

People spend too much time indoors. One solution: ecotherapy.


Where High Tech Meets the 1950s

Why did Green Bank, West Virginia, ban wireless signals? For science.


Yes, Quidditch Is Real

How J.K. Rowling's magical sport spread from Hogwarts to college campuses


Would You Live in a Treehouse?

A treehouse can be an ideal office space, vacation rental, and way of reconnecting with your youth.
More back issues, Sept 1995 to present.

Just In